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Abstract 

Properties and chemical composition of plus fraction in a petroleum fluid have a considerable 
impact on the fluid phase behavior. Understanding the trend of changes in molecular weight of 
successive single carbon number (SCN) groups in a plus fraction requires an accurate and reliable 
distribution function. Different distribution function models proposed so far may be applicable 
for certain types of reservoir fluids. In this work, analysis of 30 representative fluid samples in a 
supergiant gas condensate reservoir indicated a discontinuity in molecular weights of SCN groups 
at SCN=8, and SCN=13. The exponential, gamma, four-coefficient, and modified four-coefficient 
distribution functions were applied to these samples to predict the composition of SCN components. 
Results showed that the exponential distribution function does not predict the distribution of 
SCN composition accurately, especially in the aforementioned compositional discontinuities. 
Furthermore, the gamma distribution function was successful in predicting the jump in SCN=8 but 
failed at SCN=13. On the other hand, the modified four-coefficient model did predict the jumps 
in both SCN=8 and SCN=13. The overall error of calculations was 37.19%, 12.04% and 10.71% for 
exponential, gamma and modified four-coefficient models. Comparing four-coefficient and 
modified four-coefficient prediction results showed that the model parameters are strongly 

dependent on the fluid nature and need to be optimized based on available field data.

Keywords: Gas Condensate, plus fraction, distribution function, four-coefficient model
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ـــــــــــــــــــــــــــــ
Introduction

Phase behavior and thermodynamic 
properties of petroleum fluids are normally 
determined using equations of states (EOS). 
Proper application of EOS requires information 
such as physical and critical properties, acentric 
factor, binary interaction parameters and 
molecular weight of all components that exist 
in the petroleum fluid.

Routine separation techniques can identify 
some components, leaving most of them 
impossible to separate and characterize (Whitson 
and Brule, 2000). The light components, 
including hydrocarbon compounds up to C

6
 

and non-hydrocarbon components, i.e. N
2
, CO

2
, 

and H
2
S are almost clearly identifiable through 

experimental measurements.
 Other hydrocarbon compounds are usually 

lumped as a plus fraction (C
7+

) to avoid further 
analysis of hydrocarbon components, which is 
limited by separation techniques, preventing 
extra time for reservoir production and process 
simulations (Danesh, 1998). Characterization of 
plus fraction is one of the key steps in reservoir 
fluid phase behavior studies. In the absence 
of extended compositional measurements, 
lumping all components into a single pseudo 
heavy component can cause large errors in 
predicting phase behavior of reservoir fluids 
(Ahmed, 1989). In order to characterize the 
plus fraction, it is first split into a number of 
SCN groups and then lumped into pseudo 
components (Pedersen and Christensen, 2007). 
Several techniques have been proposed for 
splitting heavy ends; these techniques are 
based on the nature of hydrocarbons that 
exist in the plus fraction. Pedersen et al. (1983, 
1984) studied a large number of fluid samples 
and proposed a semilog relationship between 
molecular weight and composition of SCN 
groups for SCN>6. This relationship, also known 
as exponential distribution function, has been 
extensively implemented to characterize plus 
fraction of gas condensate samples (Du and 
Mansoori, 1987; Mansoori et al., 1989). However, 
Whitson (1983) observed that the mole fraction 
of SCN groups versus corresponding molecular 

weight in the plus fraction does not always 
follow the exponential distribution function 
trend, as the experimental trend shows a 
discontinuity at SCN=8. He proposed the three-
parameter, gamma probability distribution 
function to predict distribution of hydrocarbons 
in the plus fraction. The use of variance as an 
adjustable parameter in this approach makes it 
more flexible in a wider range of components 
(Ahmed, 1989). 

Ahmed et al. (1985) integrated the exponential 
and gamma distribution functions to introduce 
a new, linear distribution function to account for 
the discontinuity in SCN=8. Similar to exponential 
distribution function, they introduced the 
semilog function for composition and molecular 
weight of SCN groups, except for the SCN=8, 
which was modeled by two linear functions. 
Hosein et al. (2012) studied 20 petroleum and 
gas condensate samples and observed the 
discontinuity at SCN=8, 13. They extended the 
Ahmed et al. (1985) two coefficient model to 
a four-coefficient distribution function, called 
four-coefficient model. They reported the 
accuracy of predictions by four-coefficient 
model as AAD=7.0% for selected samples, 
compared to AAD% of 10.8% by Ahmed et al. 
(1985) model.

As stated before, all available models have 
adjustable parameters that can be calculated 
through an optimization algorithm using 
experimental data. It is expected that these 
parameters are subject to change as a function 
of fluid nature, composition and phase behavior. 
The  objective of this study is to modify the 
parameters of the four-coefficient model and 
customize them using PVT data of a supergiant 
gas condensate field. A global optimization 
algorithm procedure will be introduced to 
include all PVT data simultaneously, rather than 
individual optimization followed by averaging 
the optimized parameters. In the next sections, 
field data are introduced first. Then, modeling 
and optimization approach is presented. Next, 
results of optimization approach are presented 
and discussed. Concluding remarks appear in 
the end.
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11 0.029 ±  0.168

12 0.022 ±  0.130

13 0.023 ±  0.115

14 0.018 ±  0.086

15 0.016 ±  0.071

16 ±0.012  0.050

17 0.011 ±  0.041

18 0.010 ±  0.034

19 0.008 ±  0.027

20+ 0.036 ±  0.079

M
7+

 3.213 ± 137.679

α  ,  M  and  are model parameters that 
describe the distribution form, molecular 
weight and minimum molecular weight in the 
plus fraction. β is calculated by equation (3):

(3) 

M
C7+

 is the molecular weight of C
7+

 fraction, 
defined by equation (4):

  
(4) 

Figure 1: Mole percent distribution of pseudocomponent SCN in a gas 
condensate sample (Osfouri et al., in press).

The mole fraction of each pseudo SCN, z
i
, is 

calculated by equation (5) using composition of 
plus fraction, z

+
:

  
(5) 

ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

Field PVT data and modeling

PVT data were collected from a supergiant 
gas condensate field located in the Middle 
East. These data were selected from among 
a comprehensive data set after a careful 
screening and quality control of sampling 
conditions using standard protocols. Several 
quality control procedures have been proposed 
in the literature (Drohm et al., 1988; Trengove et 
al., 1991; Kikani and Ratulowski, 1996; Moffatt 
and Williams, 1998; Cobenas and Crotti, 1999). 
The integrated quality control of PVT and DST 
data (Osfouri et al., in press) was used to select 
30 valid data sets out of more than 70 available 
samples. The sampling depth and temperature 
were 8900-11300 ft and 188-220 F.  Table 1 
gives the average composition and range of 
variations for successive SCN groups. Figure 1 
shows compositional analysis versus SCN for 
one of the samples. The decreasing trend of 
composition is interrupted at SCN=8, 13, same 
as those reported by Hosein et al. (2012). 

The four-coefficient model proposed by 
Hosein et al. (2012) will be modified and applied 
to selected gas-condensate data. To test the 
ability of this model, results of model predictions 
are compared with exponential and gamma 
distribution functions, defined as equations (1) 
and (2):

(1) 

(2) 

Table 1: Average and variance of composition of SCN 
groups and molecular weight of plus fraction in the data 
set (Osfouri et al., in press).

SCN (%) Composition

7 0.076 ± 0.507

8 0.064 ±  0.412

9 0.056 ±  0.246

10 0.042 ±  0.241

1
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The four-coefficient model divides the 
composition distribution of plus fraction into 
four distinct zones, as shown by equations (6) 
and (7):

  
(6)

  
(7) 

Hosein et al. (2012) suggested that values of 
adjustable parameter S are selected from table 
2 for each SCN and used equations (6) and (7) to 
calculate molecular weight of plus fraction, M

n+
. 

Composition of each SCN pseudocomponent 
is calculated by equation (8), as suggested by 
Ahmed et al. (1985): 

  

(8) 

If the plus fraction is to be split up to 
SCN=20, equation (8) will be used to calculate 
composition of SCN=7-19, and composition of 
C

20+
 is calculated by mass balance, equation (9):

(9) 

Table 2: Constant for equations (6) and (7) (Hosein et al., 
2012).

SCN n=8 n<13<8 n=13 n<13

S 12.5 16 13 14.5

ــــــــــــــــــــــــــــــــــــــــــ

Results and discussion

As stated before, Hosein et al. (2012) 
calculated adjustable model parameters 
for every single sample by applying the 
optimization algorithm on that sample. 
They reported the mean or average values 
of adjustable parameters as the optimum 
model parameters for the data set. We have 
implemented a global optimization procedure 
to calculate the four model coefficients by using 

all PVT data simultaneously. The total average 
absolute deviation (TAAD), defined by equation 
(10), is used as an objective function:

(10) 

The optimum parameters are calculated by 
minimizing equation (10).

 K and L are the total number of experimental 
data sets and number of SCN groups in the 
plus fraction splitting. The minimization was 
performed using the Marquardt optimization 
program for minimizing TAAD (Chandler, 1985). 
Table (3) summarizes the S-values of the four 
coefficient model for 30 gas condensate data 
sets used in this study.

For the same data set, the exponential 
distribution parameters A and B were calculated 
as 0.981 and -0.018, and the gamma distribution 
parameters, α and τ, were calculated as 0.97 and 
86. The molecular weight of C

7+
 for each sample 

is used to calculate model parameters in gamma 
distribution function.

 Trend of plus fraction molecular weight 
(M

n+
) versus SCN group can be calculated using 

optimized models. Figures 2 and 3 show the 
M

n+
 versus SCN calculated by a modified four-

coefficient model for a gas condensate sample 
of this reservoir.

The optimized models can be used to 
calculate the composition of SCN groups for 
each sample.

 For example, figure 4 compares model 
predictions with experimental data of SCN 
compositions for a gas condensate sample of 
this reservoir. It is clear from this figure that the 
modified four-coefficient model can predict 
experimental data very well.

Table 3: New adjusted constants of the 4 coefficient 
model.

SCN n=8 n<13<8 n=13 n<13

S 13.14 14.07 12.41 13.21
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Table 3 summarizes average absolute 
deviation (AAD%) of model predictions for all 
samples. According to this table, the optimized 
four-coefficient model (this work) has AAD% 
equal to 10.71, while the exponential, gamma, 
and original four-coefficient models give AAD% 
equal to 37.19, 12.04 and 16.04, respectively. 
According to this table, the modified four-
coefficient model shows the best match with 
experimental data.

 On the other hand, the exponential model 
shows large error in predicting the composition 
of SCN groups for all samples used in this study, 
although it was suggested by Mansoori et al. 

(a)

(a)

(b)

(b)

Figure 2: Changes in molecular weight of SCN=8 for one of the gas-condensate samples
(a) Molecular weight between SCN=7-8 (b) Molecular weight between SCN=8-12.

Figure 3: Changes in molecular weight of SCN=13 for one of the gas-condensate samples
(a) Molecular weight between SCN=12-13 (b) Molecular weight between SCN=13-19.

(1989) for gas-condensate systems.
 Figure 5 compares prediction results of 

modified four-coefficient and optimized 
gamma distribution function. Both models 
can predict the compositional discontinuities 
at SCN=8; however, the gamma distribution 
function cannot predict second discontinuity at 
SCN=13, although it gives better predictions for 
some SCN groups.

 Overall, better results are obtained by the 
simpler four-coefficient model modified for 
selected data set. This model is easier to use 
with less calculation complexity and requires 
less calculation steps.
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Figure 4: Comparison of modified four-coefficient model (solid line) with experimental data (black circles) for gas 
condensate sample.

Figure 5: Average absolute deviation for composition of SCN groups in all samples. Black columns: modified four-
coefficient model (this work); Grey columns: gamma distribution function
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Table 4: Average absolute deviation of samples and total average deviation of different distribution functions

Sample name Exponential Gamma CM 4 This work

S1 40.75 8.35 10.06 8.38

S2 34.62 6.54 10.99 5.24

S3 12.89 8.58 8.07 6.71

S4 11.55 9.68 12.30 5.87

S5 12.25 13.64 11.09 7.37

S6 16.90 10.04 14.64 9.59

S7 13.90 11.41 18.31 8.46

S8 23.29 7.04 10.79 5.94

S9 63.69 14.18 20.97 15.50

S10 15.43 10.28 15.76 11.69

S11 23.91 10.97 15.38 9.99

S12 84.82 10.12 13.03 8.97

S13 75.89 9.92 12.09 8.90

S14 34.55 17.42 25.56 14.84

S15 13.73 13.69 16.73 11.50

S16 32.86 13.63 19.98 12.71

S17 29.16 14.05 14.94 13.14

S18 22.00 13.61 15.74 12.91

S19 22.65 12.73 16.79 11.67

S20 22.65 12.47 14.46 12.66

S21 40.90 11.84 17.05 10.31

S22 30.22 11.87 14.67 10.96

S23 124.04 13.63 19.75 12.60

S24 100.58 14.08 20.10 12.94

S25 96.94 12.93 19.15 12.28

S26 22.42 12.31 16.79 11.34

S27 20.06 16.60 25.90 14.75

S28 20.63 13.72 16.19 11.70

S29 21.00 12.63 16.89 11.10

S30 31.55 13.35 16.98 11.28

TAAD 37.19 12.04 16.04 10.71

ـــــــــــــــــــــــــــ

Conclusions 

Gas condensate samples taken from the 
supergiant reservoir under study showed 
discontinuities or jumps in molecular weight 

at SCN=8, 13. Results showed that ignoring 
discontinuities can result in large errors when 
applying exponential distribution function. 
The gamma distribution function can predict 
compositional discontinuities at SCN=8 but 
failed at SCN=13. On the other hand, the 
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modified four-coefficient model was shown to 
successfully predict both discontinuities with 
the best accuracy compared to exponential, 
gamma, and original four-coefficient models. 
Results also showed that the parameters of 
distribution function are strongly dependent 
on fluid nature and better results are obtained 
upon optimizing the selected model using 
experimental field data.

nomenclatuRe

AAD Average Absolute Deviation

F Distribution function

M Molecular weight

S
Adjustable parameters of 

equations 6 & 7

Sn Sample name, in table 3

SCN Single Carbon Number

TAAD  Total Average Absolute Deviation

Z Molar composition of SCN group

GReek letteR

A Distribution form

T
 Minimum molecular weight in the

plus fraction

supeRscRipts

Cal Calculation

Exp Experimental

subscRipts

+ Plus fraction

N Number of SCN group

ـــــــــــــــــــــــــ
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Abstract

In the last two decades, various modifying techniques have been employed to improve membranes 
performance including mixed matrix, cross linking, grafting, polymer blending, making composite 
or hybrid membrane. Blending of polymeric membrane is a cost and time effective approach and an 
advanced technique for gas separation, where two or more polymers are mixed to produce a new 
material with different and desired physical, chemical and mechanical properties. This work reports 
on the separation performance of a novel polymeric blend membrane based on poly(amide-b-
ethylene oxide) and polyethersulfone blends. These flat sheet membranes were synthesized using 
solution-casting in different ratios (10-40%) in order to improve membrane separation performance 
of CO

2
/CH

4
 gas mixtures. Prepared membranes were then characterized by Fourier Transformed 

Infra-Red Spectroscopy (FTIR) where spectral changes indicated existence of molecular interaction 
among the polymeric blends, highlighting their compatible nature.  Permeabilities of pure gases 
(CO

2
 and CH

4
) were also examined at room temperature. Results indicated that increasing wt.% 

PES in the Pebax®/PES blend membranes increased selectivity of CO
2
/CH

4
 and decreased pure gas 

permeabilities. 

Keywords: Blending, gas separation, poly(amide-b-ethylene oxide), polyethersulfone

* Corresponding author. Email address: mozdianfard@kashanu.ac.ir

Fabrication and Characterization  of Polymer Blend 
Membranes for CO2/CH4 Separation
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ـــــــــــــــــــــــــــــ

Introduction

Gas separation membrane is a semi-
permeable barrier, separating one or more 
gases from a multicomponent gas mixture by 
permitting the transport of certain molecules 
under the influence of some forms of chemical 
potentials such as pressure or concentration 
gradient (Mulder, 1997; Baker, 2000).

There are many known industrial processes 
involving separation of carbon dioxide from 
other gases including purification of synthesis 
gas to obtain high purity hydrogen for fuel 
cells, removal of carbon dioxide in natural gas 
sweetening, separation of carbon dioxide 
from industrial flue gases for greenhouse gas 
sequestration and removal of carbon dioxide 
from breathing air in space crafts or spacesuits 
(Dortmundt and Doshi,1999; Chung et al., 
2007). Table 1 summarizes several sweetening 
technologies commercialized to date for such 
purposes (Maddox and Morgan, 1998).

Among these techniques, membrane 
separation has attracted much attention due to 
its compact and modular devices, mild operating 

conditions, simple equipment without moving 
parts (Ismail and Kusworo, 2007; Shekhawat 
et al., 2003), while it could be scaled up easily 
for design purposes (Shekhawat et al., 2003) 
and does not require sorbent regeneration or 
desorption (An et al., 2011). 

A desirable membrane should satisfy several 

structural and functional properties including 

a combination of high permeation rate, high 

species selectivity, low fouling rate, long and 

reliable service life, and adequate mechanical, 

thermal and chemical stabilities under certain 

operating conditions (Meinema et al., 2005). 

However, a single membrane cannot surpass 

all above requirements and hence, attempts 

are continually being made to compensate for 

these using polymeric blend membranes which 

offer extensive processability. 
As far as the ratio of glass transition and 

application temperatures are concerned, 
there are two types of polymeric membranes: 
glassy and rubbery. The former have a glass 
transition temperature higher than application 
temperature, while the latter refers to those 
polymeric membranes having glass transition 
temperatures well below their application 

Table 1- Classification of sweetening Technology

 CO
2
 Removal

Mechanism
Process Type Technology Commercial Name

 Chemical

absorption

Regenerative, continuous
 Potassium

carbonate

 MEA, DEA, MDEA, DIPA, DGA,

formulated solvents

Non regenerative, continuous 

(usual arrangement : lead/lag)
Sodium hydroxide

Benifielf, Catacarb, Giam 

macro-Vetrocoke,etc.

 Physical

absorption
Regenerative, continuous Physical solvents -

 Physical-chemical

absorption
Regenerative, continuous

 Physical-chemical

solvents

Selexol,Rectisol, Purisol, Fluor 

Solvent, IFPexol, etc.

 Physical

adsorption

Regenerative, 

continuous(adsorption/

desorption sequence)

Molecular sieves
Z5A (Zeochem), LNG-3 (UOP), 

etc.

Permeation Continuous Membranes
Separex, Cynara, Z-top, Medal, 

etc.
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temperatures (Mulder, 1997). A limiting 
challenge in the industrial application of 
polymeric membrane is their low permeability 
and selectivity, for which blending with other 
polymers are thought to be the right approach 
in meeting this challenge. 

poly(amide-b-ethylene oxide) (Pebax®1657) 
seems to be a suitable choice for this as it is a 
rubbery copolymer containing PEO segments 
as the permeable phase, with the polyamide 
crystalline phase giving the required mechanical 
strength to the membrane. It also has a high CO

2
 

permeability due to the high affinity of its PEO 
segment with respect to the polar CO

2
 molecule, 

making it a promising material for CO
2
 capturing 

of flue gas and in natural gas sweetening 
processes (Car et al., 2008; Okamoto et al., 1995; 
Bondar et al., 2000). Polyethersulfone (PES) on 
the other hand, offers high chemical resistance, 
and is stable against oxygen and thermal 
degradation with high CO

2
/CH

4
 selectivity while 

being commercially attractive (Çakal, 2009). 
Therefore, adding PES to Pebax® may improve 
the CO

2
/CH

4
 selectivity of this rubbery polymer, 

and hence in this study, we first prepared the 
Pebax®/PES blend membranes with different 
ratios and characterized them before gas 
transport properties of the blend membranes 
were investigated and compared with those of 
the neat Pebax®. To the best of our knowledge, 
apart from our own research papers currently 
under review, blending of these rubbery/glassy 
polymers has not been reported elsewhere in 
the literature.

ـــــــــــــــــــــــــــــــ

Experimental

Material

Pebax® 1657 was purchased from Arkema 
and PES was supplied from BASF, with their 
chemical structure being presented in Fig. 1. 
Dimethylacetamide (DMAc) was purchased 
from Merck and used as solvent in its received 
form. 

Preparation of films

Polymeric blend membranes with various 

compositions (10/90, 20/80, 30/70, 40/60 
wt.%) were prepared by solution-casting and 
evaporation method. First, PES in stipulated 
quantity was dissolved in DMAc using a 
magnetic stirrer for 12 h. Subsequently, Pebax® 
was added while stirring was continued at 90 
°C to allow complete mixing of the polymers. 
The solution was cast into a 10 cm diameter 
Petri-dish, and kept in an oven at 60 °C for 16 
h. All membranes were kept under vacuum at 
room temperature overnight before testing was 
conducted on them.

Fig. 1- Chemical structures of (a) Pebax® and (b) PES

Characterization

Fourier transform infrared (FTIR) spectra were 
recorded using a Bruker Alpha FTIR to examine 
the chemical interaction between the polymers. 
Measurements were carried out using the 
attenuated total reflectance (ATR) technique.

Gas permeability

Pure gas permeation properties were 
determined using constant pressure/variable 
volume method for both CO

2
 and CH

4
. All 

measurements were performed at room 
temperature and volume change under 
constant feed pressure was measured by means 
of a capillary tube. 

Permeability, an intrinsic property of the 
membrane material, is defined according to the 
following equation:
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(1) 

where Pi represents the permeability for 
penetrant component i, L is the membrane 
thickness (cm) and N

i
 refers to the flux passing 

through the film (cm3/sec). Its unit is commonly 
expressed in Barrer (1 Barrer = 1×10-10 cm3 (STP) 
cm/(cm2 sec cmHg)). The ability of a membrane 
in separating two molecules, for example, i and 
j, is referred to as the ratio of their permeabilities, 
or better known as the membrane selectivity. In 
this study, ideal gas selectivity was calculated 
from the ratio of pure gas permeability 
according to equation (2) below (Mulder, 1997):

(2)  

ــــــــــــــــــــــــــــــــــــــــــــــــــ

Results and discussion

FTIR Analysis

Fig. 2 demonstrates FTIR-ATR spectra of 
Pebax®, PES and Pebax®/PES (20 wt.%) blend 
membranes. As can be seen, –C=O  and  –C–O– 
stretching vibrations in Pebax® were located 
at 1731 and 1090 cm−1, respectively. Moreover, 
bands at 1635 and 3296 cm−1 could be attributed 
to presence of both C=O and N–H of the amide 
functional group, respectively (Kim and Lee, 
2001), while the band at 1540 may be related 
to N-H bending. In the PES spectrum, the S=O 
stretching peaks were situated at 1143 cm−1and 
1007 cm−1, while the C-H stretching peak of 
benzene ring was located at 3096 cm−1. Other 
bands at 1574, 1482 and 1402 cm−1 might be 
assigned to aromatic skeletal vibrations. The 
characteristic peaks at 1320 cm−1 and 1230 cm−1 
may also be attributed to C–O–C stretching (Qu 
et al., 2010).

As for the Pebax®/PES (20 wt.%) blend 
membrane, apart from Pebax® characteristic 
peaks which were clearly evident, the N-H peak 
was found to be gradually split into two peaks; 

the free N-H in the Pebax® structure as well as a 
hydrogen bonded one with S=O group appeared 
at 1542 cm-1. In other words, an intermolecular 
hydrogen bond may have been formed 
between the amidic hydrogen and the sulfone 
group. This weak intermolecular interaction, has 
led to longer N-H bond and hence wavelength 
vibration of the bonded N-H has become higher 
than the free one. This could be treated as 
evidence for PES being kept in the Pebax® matrix. 

 

(a)

 

(b)
 

(c)

Fig. 2- FTIR-ATR of (a) pure Pebax® (b) pure PES (c) 
Pebax®/PES (20 wt.%)
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Permeability results

Figs. 3 and 4 illustrate pure gas permeabilities 
and ideal selectivities of both neat and blend 
membranes using CO

2
 and CH

4
, respectively. In 

general, CO
2
 permeability is higher than CH

4
, and 

CO
2
 has greater solubility in Pebax® polymer. 

The kinetic diameter of CO
2
 (3.3 Å) (Bakhtiari et 

al., 2011; Li et al., 2013) is also smaller than that 
of CH

4
 (3.8 Å) (Li et al., 2013; Karkhanechi et al., 

2012), which leads to its greater diffusivity. 
Compared to pure Pebax® membrane, blend 

membranes exhibit improved CO
2
 selectivity 

perhaps due to the presence of PES in the 
blend, while compared to pure PES membrane, 
these membranes exhibit improvement in the 
permeability due to the presence of Pebax® 
in the blend. Adding PES as glassy polymer to 
Pebax® matrix has led to a decrease in the chain 
mobility of the Pebax®, and hence reduced 
permeability. Because of size sieving properties 
of the glassy polymers, PES presence in Pebax® 
has apparently increased selectivity here.

Fig. 4 – Ideal selectivities for Pebax®/PES blend membranes 

Fig. 3 – Pure gas permeabilities for Pebax®/PES blend membranes 
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ـــــــــــــــــــــــــ

Conclusion

In fabricating a novel polymeric blend 
membrane to separate CO

2
/CH

4 
gas mixtures, 

based on poly(amide-b-ethylene oxide) and 
polyethersulfone blends, flat sheet membranes 
were synthesized using solution-casting in 
different ratios (10-40%), where all prepared 
membranes were of clear and homogeneous 
films. FTIR analysis confirmed presence of PES 
in Pebax® matrix. Spectral changes indicated 
existence of molecular interaction among the 
polymeric blends, highlighting their compatible 
nature. Increasing wt.% PES in the Pebax®/PES 
blend membranes, increased selectivity of CO

2
/

CH
4
 while decreasing pure gas permeabilities. 

Gas permeabilities of flat sheet blend 
membranes varied monotonically between 
those of the two pure polymers. For further 
work we intend to add fillers in the blend, in 
order to enhance even further the polymeric 
blend membrane performance.

ــــــــــــــــــــــــ
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Abstract

One of the most important goals of gas engineering is to optimally distribute gas in gas transmission 
and distribution networks; however, this process often suffers from some inevitable distribution 
network problems such as errors caused by inaccurate estimates of pressure at various points in 
the network. Recently, statistical optimization methods have been proposed to solve this problem. 
Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are common methods for this 
purpose. The purpose of this study is to compare the performances of these two procedures. If 
similar constraints and computational loads are applied to both methods, PSO can provide more 

accuracy and speed compared to GA, although repeatability of GA was found to be better.

Keywords: Gas network, optimization, particle swarm optimization, genetic algorithm
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Introduction

After producing natural gas from the 
underground reservoir, the first process is to 
transport the natural gas to operation and 
filtration units. There are a number of options 
for transporting natural gas from oil and gas 
fields to market. These include pipelines, 
liquefied natural gas (LNG), compressed 
natural gas (CNG), and gas to solids (GTS), i.e., 
hydrates, gas to power (GTP) and any possible 
method. If technical and economic hurdles 
can be overcome, these pipelines can become 
effective. Pipelining is the method that is 
preferred. In the last decade, on average, over 
12,000 miles per year of new gas pipelines 
have been completed, most of which are 
transnational (Mokhatab, S. et al., 2014).
To keep gas flowing in these networks, 
pressure-boosting stations are installed along 
the delivery system. The stations use fossil 
energy or electricity to operate flowing of gas 
depending on gas volume. The performance of 
these compressors depends on many factors, 
the most important of which is gas pressure 
in the delivery system. In addition, the most 
important sites along the system are gas 
delivery points. To estimate pressure, pressure-
flow equations are used, and Bernoulli’s 
Equation is one of the most widely used ones 
for estimating gas pressure in a gas delivery 
system (Schroeder, 2001). Such equations 
always show an inevitable degree of error. To 
tackle this problem a few number of methods 
have been proposed (Mokhatab, S. et al.,2012; 
Golshan et al., 2000; Haji Ali Akbari and Reza 
Mosaiebi Behbahani, 2014).
Recently, researchers have studied the 
optimization algorithms in a wide variety of 
fields (Edgar et al., 2001; Rao, 2009). Genetic 
algorithm (GA) and particle swarm optimization
(PSO) are the most popular optimization 
algorithms, which are called population-based 
algorithms (Goldberg et al., 1988; Gen et al., 
2008; Kennedy and James, 2010; Poli et al., 
2007; Haupt, R. L. and Haupt, S. E, 2004). GA was 
proposed by John Holland in the 1970s based 
on Darwin’s theory of evolution (Holland, J.H, 

1975). In GA, the solutions (chromosomes) are 
evaluated based on fitness values (or objective 
function values) for a randomly generated 
initial population. The fitness or objective 
function values of all solutions are evaluated for 
reproduction. Thereafter, the population of the 
new generation is formed based on the selected 
individual crossover and mutation operations 
in an iterative manner until maximum number 
of generations or convergence is reached. 
Inspired by the social behavior of bird flocking, 
Kennedy and Eberhart introduced PSO in the 
1990s (Eberhard and Kennedy, 1995). The 
general procedure of PSO is to propagate in 
the design space the optimal solution over 
a number of iterations (moves) for an initial 
population which is randomly generated. In this 
algorithm, every solution is known as a particle 
which contains three parameters: position, 
velocity, and the population of solutions 
(swarm of particles). Thereafter, selection is 
made for reproduction to update velocity, and 
the position is determined for each individual 
particle based on fitness values. This process is 
repeated until the stopping criterion is reached.
In this paper, the performances of GA and 
PSO for pressure equation tuning in natural 
gas transmission and distribution networks 
are compared. To the best of our knowledge, 
this is the first time that a performance 
comparison is made between GA and PSO in 
tuning gas networks. In this study, performance 
evaluation of the optimization algorithms is 
practically demonstrated through examining 
the performance of a natural gas network in 
Western Azerbaijan Province (as a national site 
of the Iranian Transmission and Distribution 
Gas Network).
In recent decades, the optimization algorithms 
have been studied by the researcher in a 
wide variety of fields (Rao, 2009; Edgar et al., 
1988). Genetic algorithm and particle swarm 
optimization are the most popular optimization 
algorithms which are called population based 
algorithms (Goldberg et al., 1988; Kennedy, 
1993; Kennedy and Eberhart, 1995). Genetic 
algorithm (GA) was defined by John Holland 
in the 1970s based on the Darwinian theory 
of evolution applied to biology (Holland, 
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1992). In GA the solutions (chromosomes) are 
evaluated based on fitness value (or objective 
function value) for a randomly generated initial 
population. For all solutions, fitness or objective 
function values are evaluated for reproduction. 
The population of new generation is formed 
based on the selected individuals crossover and 
mutation in an iterative manner until maximum 
number of generations or convergence 
is reached. Kennedy and Eberhart Particle 
introduced the swarm optimization (PSO) in the 
1990s inspired by the social behavior of birds 
flocking (Kennedy and Eberhart, 1995; Eberhart 
and Kennedy, 1995). The general procedure 
of PSO is to propagate in the design space 
towards the optimal solution over a number 
of iterations (moves) for a randomly created 
initial population. In this algorithm, every 
solution known as particle contains parameters 
of position and velocity, and the population 
of solutions is called a swarm of particles. 
Thereafter, based on fitness, selection is done 
on the particles for reproduction to update 
velocity and position for each individual. This 
process is repeated until stopping criterion is 
reached.
 In this paper, the performances of GA and PSO 
for tuning of pressure equation in natural gas 
transmission and distribution networks are 
compared. To the best of our knowledge, this 
is the first time that a performance comparison 
between GA and PSO for tuning the gas 
networks is presented. Performance evaluation 
of the optimization algorithms is practically 
demonstrated through Western Azerbaijan 
Province (a part of the Iranian transmission and 
distribution gas network).

ـــــــــــــــــــــــــــــــــــــــــــــــ

Problem Description

Gas transmission and distribution 
networks

Gas Network Management

Gas network management means setting the 
pressure and input equipment’s power so that 

there is no pressure drop or abnormal pressure 
in the network. The manager tool for this 
purpose is dispatching, which is a set of tools 
and software connecting the equipment and 
engineers. The equipment generally has little 
specified error value that will be negligible 
by calibration. But the software is more 
challenging. This will be discussed below.

General Flow Equation

  Based on the assumptions that there is no 
elevation change in the pipeline and that the 
condition of flow is isothermal, the integrated 
Bernoulli’s equation is expressed by the 
following Equation (Schroeder, 2001):

 (1)

Qsc: standard gas flow rate (measured at base 
temperature and pressure, ft3/day)
Tb: gas temperature, base conditions, 519.6◦R 
Pb: gas pressure, base conditions, 14.7 psia 
P1: inlet gas pressure, psia 
P2: outlet gas pressure, psia 
D: inside diameter of pipe, inches 
f: Moody friction factor
E: flow efficiency factor 
γ

G
: gas specific gravity 

Ta: average absolute temperature of pipeline 
Za: average compressibility factor 
L: pipe length, miles
C: 77.54 (a constant for the specific units used).

Pipelines are usually not horizontal; however, 
as long as the slope is not too great, a 
correction for the static head of fluid (Hc) may 
be incorporated into the following equation 
(Schroeder, 2001). 

 (2)
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Where

H1: inlet elevation, ft 
H2: outlet elevation, ft
g: gravitational constant, ft/sec2

Error definition

  Based on the review of data taken from 
network measurement system a significant 
amount of error has been observed.
Error in performed analysis means the difference 
between the pressure data that has been 
read from the pressure control station (And 
outbound of the network) and the predicted 
quantities from the equations used in the 
software.

E= P
out 

(measurement) – P
out

(P,D,z,L,T,μ,…)

This value has been reduced with passage of 
time by providing newer equations.

Sources of Error

  Perhaps the first question that comes to mind 
is: “Why is it that no equation which provides 
an accurate answer is available?”
The answer is the condition of pipelines and 
their performance in the future is ambiguous. 
For example:

1. Aging of the pipes: This factor is influenced 
by many parameters (such as temperature 
tubes per minute, precise amounts of 
alloy composition, metallurgy metal tube 
materials, gas ...).

2. Environment: Temperature and weather 
forecast for the next few days is an 
approximation so exact temperature and 
weather forecasting for over than 30 years 
is impossible.

The only way in this issue is using statistical 
optimization for fixing the equations which are 

used in the software.
Such corrections are common in developed 
countries, for example (in 2012), ATMOS 
international limited has carried out extensive 
research on the Subsea Pipeline Models (Hanmer 
et al., 2012) which leads to better estimates 
of the hydraulic capacity and the Estimated 
Time of Arrival will be achieved by tuning the 
effective roughness and the heat transfer of 
the pipeline models.

Evolutionary algorithms

  All evolutionary algorithms consist of three 
main components. In the first part, the 
population is randomly initialized. Possible 
solutions based on the cost function are 
evaluated and ranked in the second step. 
Thereafter, in the last step some of the solutions 
are selected and new population is generated. 
As mentioned previously, the purpose of this 
paper is to compare the PSO and GA in natural 
gas transmission and distribution networks for 
tuning of pressure equation. Therefore, the 
main characteristics and general process of 
each of these algorithms are described in the 
following sections.

Genetic Algorithms
  There are many ways to implement a genetic 
algorithm, but the overall process of this 
algorithm is shown in Fig. 1. The algorithm can 
be summarized as follows:

•	 An initial population is randomly generated.

•	 Objective function values for each solution 
are calculated (chromosome).

•	 Better chromosomes are selected 
(chromosomes with higher objective 
function values have a higher probability to 
be chosen).

•	 A pair of offspring chromosomes are 
produced by GA parameters such as 
crossover and mutation.

•	 New population is created and the process 
is repeated until stop criterion is satisfied.
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Particle Swarm Optimization

  One of the drawbacks of previous methods 
is the lack of data, which limits the search 
and may even become divergent. In addition, 
calculation of this method is less. The overall 
process of the method is shown in Fig. 2. The 

Figure 1. GA flowchart

                         
 Start

Specify the parameter of GA

Define the objective function

Generate initial population

Generate new population
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Figure 2. PSO flowchart
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searching procedure of PSO can be summarized 
as follows:

•	 The velocity and position of all particles are 
randomly initialized.

•	 Objective function of each particle is 
evaluated.

•	 Position and velocity of particles in iteration 
are updated according to:
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(3)  

(4) 

•	 When the size of population, inertia weight, 
and two positive constants called cognitive 
and social parameters, and random numbers 
uniformly distributed within the range.

•	 Personal best and global best are updated 
by the following:

•	 The algorithm is repeated until a certain 
number of iterations is met.

ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

Result and discussion
 

As mentioned earlier, the results of the gas 
engineering software (the gas transmission 
networks) always show an error in predicting 
pressure in different parts of the network (these 
default error values are shown in Table 1). To 
construct a pipeline, from the conventional 
equation of gas transmission network, AGA 
is one of the common equations in National 
Iranian Gas Company’s software. The fully 
turbulent AGA equation has the following 
formula in Imperial Units (Haji Ali Akbari and 
Mosaiebi, 2014). 

(5)  

where 
Qb: gas flow rate at base conditions, SCF/D 
Tb: gas temperature, base conditions, 519.6◦R 
Pb: gas pressure, base conditions, 14.7 psia 
P1: inlet gas pressure, psia 
P2: outlet gas pressure, psia 
D: inside diameter of pipe, inches 
E: flow efficiency factor 
Ta: average absolute temperature of pipeline 

Za: average compressibility factor 
L: pipe length, miles
Ke: roughness

  The equation can be rewritten as below (Haji 
Ali Akbari, 2014; Ahmed, 1989): 

(6) 

After one year, the data are gathered from this 
gas network, and accordingly two sets of data 
can be obtained. As mentioned earlier, the data 
were gathered from the Iranian Transmission 
and Distribution Gas Network, Western 
Azerbaijan Province.

•	 Series pressures calculated in the 
software: This series is calculated 
by physical specifications of the gas 
network, its volume, properties of 
the gas, and specifications of the 
equipment used.

•	 Series of reports from pressure 
measurement systems: This series 
of data is obtained from the real 
system and is normally used for 
system performance analysis. In the 
next section, some criteria for data 
analysis are introduced.

  Therefore, statistical optimization methods 
are the only way to eliminate the errors in the 
gas transmission network. In this paper two 
approaches of genetic algorithm (GA) and 
Particle Swarm Optimization algorithm (PSO) 
were applied and evaluated on a small portion 
of the gas transmission network.
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Table 1: The default error values

Exact Value Default Value Error

1070 1069.127 -0.873 1867.458

1069.65 1030.482 -39.168 82257.97

1069.73 990.6736 -79.0564 162888.1

1069.81 949.197 -120.613 243518.5

1061.82 1059.937 -1.883 3995.268

1061.78 1051.636 -10.144 21438.49

1061.63 1051.33 -10.3 21763.49

1057.62 887.1947 -170.425 331445.6

1045.41 1046.629 1.219 2550.196

1026.49 1031.204 4.714 9699.97

1007.02 1015.033 8.013 16202.71

994.085 1003.845 9.76 19499.8

990.617 893.691 -96.926 182638.4

983.183 763.3859 -219.797 383890.8

986.481 997.5334 11.0524 21928.12

986.948 997.2169 10.2689 20375.19

985.903 996.6532 10.7502 21312.88

PSO

  Evaluated network (part of the Iranian 
transmission and distribution gas network– 
Western Azerbaijan Province) based on 
equations AGA and Colebrook-White is 
modeled and the values of roughness by PSO 
have been modified so that the error (the 
difference between the measured pressure and 
calculated pressure) approaches zero (Figure 3). 

As is clear from Figure 3, the objective 
function value is reduced to about 2,300. 

Figure 3. The objective function value per iteration
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Figure 4 The objective function value per generation

GA

The variation of the objective function 
according to generations is shown in Figure 4.
As shown in Figure 4 an objective function 
value is reduced to about 2500.

PSO & GA speed and accuracy analysis

In the previous sections, the error rates of 
the two methods were analyzed. In this section, 
the speed and accuracy of the methods are 
analyzed under equal conditions (Table 2).

Table 2: Conditions and constraints of the optimizer

GA PSO

lower bound=400 lower bound=400

upper bound=500 upper bound=500

population 

size=3500

swarm size=3500

generation=200 maximum number of 

iteration=200

Under equal conditions, according to Table 
2, both of the methods were tested: the run 
time needed for GA and PSO were found to be 
392 and 223 sec. respectively. As a result, PSO 
was 76% faster.

In Figs 5-6, roughness values are shown for 
both GA and PSO methods for the 17 points 
of the network system. As the values indicate, 
both of the methods show reasonable degrees, 

but according to gas engineering analysis, the 
answers observed in PSO results seem to be 
more reliable.

Furthermore, the changes in roughness 
from one point to another were found to be 
relatively greater in PSO. Yet, in most of the 
points, the roughness in GA was observed to 
be less than that of PSO. According to Figs. 5-6, 
the maximum and minimum roughness rates 
were obtained in the PSO method. This finding 
showed that the rate of roughness changes in 
this method was greater and that in practice the 
method can problematize roughness changes.

It should be also noted that after about 
500 tests on both methods, repeatability of 
GA was found to be much better than that 
of PSO. More specifically, the 500 tests on 
the two methods involved 500 optimization 
processes conducted on the sample under 
equal conditions to evaluate repeatability and 
to verify the performance of the methods. Figs. 
6-7 show the variance of the answers based on 
the results.

As Table 3 shows, variance was used to 
compare roughness in the two methods. As a 
result, the degree of changes in PSO was found 
to be considerably higher (approximately two 
times greater), which would complicate its 
implementation. Figs. 6-7 illustrate the pattern 
of values and their variance for roughness of 
the two methods. As can be seen, the variance 
of values for GA is more limited; so one can 
arrive at the conclusion that the repeatability 
of roughness values was better in GA than in 
PSO (Table 3, Figures 5, 6). As mentioned above, 
the two methods GA and PSO were used to 
optimize roughness rates in the gas network 
under study.

Both methods did actually decrease network 
errors, but to compare them objectively, three 
criteria were taken into account: error rate, 
speed, and accuracy. As a result, PSO showed 
fewer errors and increased the speed and 
accuracy of the answers.

Yet, at the same time, the degree of point-
to-point changes of PSO was found to be high. 
As a result, users are recommended to first 
calculate rate of roughness through PSO, and 
then rely on GA. Through this hybrid process, 
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the results observed will have more speed and 
accuracy, while they will show fewer changes 

in answers.

Table 3: Result Variance

Title PSO GA

Pipe 1 9637.214 95649.17

Pipe 2 7323317 1822185

Pipe 3 2550420 2546315

Pipe 4 7041421 2469718

Pipe 5 27928.93 57971.79

Pipe 6 1933637 3131380

Pipe 7 7225785 2062032

Pipe 8 342.2096 2175652

Pipe 9 4291376 1086471

Pipe 10 2972490 2106808

Pipe 11 2455181 2058235

Pipe 12 4520820 643426.8

Pipe 13 6774454 1001154

Pipe 14 8326615 1230682

Pipe 15 1619731 1153129

Pipe 16 7659232 4622807

Pipe 17 2588888 2756354

Total 67321276 31019970

ــــــــــــــــــــــــــــــــــــــــــ

Conclusion

Clearly, it is essential to eliminate the errors 
in gas engineering software in the process of 
estimating pressure in different parts of gas 
distribution networks. In line with this, in the 
present study, PSO and GA algorithms were 
used to discover degrees of pipe roughness of 
each point. The results of this study indicated 
that the PSO method was faster than GA (the 
process time for GA was 76% more than that of 

PSO). Moreover, the objective function graphs 
showed that through reducing the number of 
generations, PSO could be much more accurate 
than GA. In other words, in this study, PSO 
was found to be more accurate than GA in 
providing answers. Moreover, PSO was found 
to be slightly faster.

Yet, GA, compared to PSO, showed more 
reliable answers. In other words, the distribution 
of PSO answers was found to be relatively higher 
than that of GA. Given the relative advantage 
of PSO in terms of speed and accuracy, and the 
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Figure 5: PSO’s answers distribution

Figure 6.GA’s answers distribution

Figure 7. PSO and GA Ke results

function according to economical and safe 
goals. Thus, in future studies, an integrated 
model of GA and PSO can be investigated to 
provide better roughness values and answers 
with more accuracy, speed, and distribution.

ـــــــــــــــــــــــــ
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slight advantage of GA in the third parameter, 
one can obtain optimized values by combining 
the two methods.

The general conclusion of the tuning process 
is that fuel costs can be cut in the pressure 
compressor stations, less time is wasted, and it 
is an exemplar of engineering. In other words, 
the process involves the design, development, 
and forecast of the structure, while machines 
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Abstract

To evaluate the hydrocarbon potential of coal seams (D and E horizons) and their country rocks 
of Hojedk Formation (Middle to Upper Jurassic) at Kerman Coaly Syncline (KCS), 32 coal and 46 shale 
samples were collected. These samples were studied geochemically, and their quantity, quality and 
thermal maturity of organic matter were studied as well. According to Rock-Eval pyrolysis data, it 
was found that the total organic carbon (TOC) content of coal samples is in excellent condition. 
Such a situation is, more or less, the same for the shales. Genetic potential (GP) also indicated that 
the majority of the samples have acceptable potential for gas and oil generation. Therefore, the 
organic matter quality of Hojedk Formation was evaluated as good to excellent generally. The 
use of hydrogen Index (HI) as one of the most important factors determining the quality of source 
rocks showed that the coal and shale samples of Hojedk formation have fewer than 50 to over 600 
mgHC/g rock, and majority of the samples fall in 50-200 and 200-300 mgHC/g rock category and 
therefore, it can be stated that the quality of organic matter varies from without potential to gas 
and oil potential. The existing kerogen types in these samples are mainly of the III and II-III and 
consequently, gas and oil generation in the region is likely. Relative high values of S2/S3 (3.70 to 
402.36) confirmed the above-mentioned products. In order to evaluate the thermal maturity of 
organic matter, two different methods (Tmax and vitrinite reflectance) were used. Tmax values 
revealed that most samples of KCS are in the early to late oil generation window conditions. The 
highest Tmax (overmature condition) is related to the Tikdar stratigraphic section and this is 
probably due to its proximity to the Kuhbanan fault. Measurements of vitrinite reflectance also 
showed that Ro% ranges from 0.5 to 2% and the mean value of this factor is 1.18% and therefore, 
corresponds to the condition of oil generation window. Finally, based on the quantity, quality and 
thermal maturity of organic matter at KCS, it can be said that the region has adequate potential 
for gas and to a minor extent oil generation. Moreover, coal seams, because of enough liptinite 

contents (up to 22%), are in a better condition in general.

Keywords: Kerman Coaly Syncline (KCS), Hojedk, Hydrocarbon potential, Pyrolysis, Kerogen. 

* Corresponding author. Email address: aliamiri731@gmail.com 



29Volume.1 / Issue.1 / July 2016

ـــــــــــــــــــــــــــــ

Introduction

For many years, it has been well recognized 
that the source rocks of terrestrial origin have 
favorable potential for oil and gas generation 
worldwide (Hunt, 1996). For example, in the 
Gippsland Basin of southeastern Australia, such 
cases have been reported (Shanmugam, 1985; 
Burns et al., 1987; Bishop, 2000). Mahakam Delta 
of Indonesia (Huc et al., 1986; Peters et al., 2000) 
and Nigerian Delta (Tuttle et al., 1999) have a 
similar situation. Although such circumstances 

have been reported in many regions of the 
world and in spite of the wide spread of 
continental suitable sediments, this issue has 
still not been addressed in Iran seriously.

Between 4000 to 7000 meters of late Triassic 
to late Jurassic non-marine and marine deposits 
consisting of shale, coaly shale, siltstone, 
argillite, sandstone and limestone interlayer 
were exposed over 2200 square kilometers in 
the northern parts of Kerman Province. Outside 
the scope of this study, in Central Iran, especially 
in Yazd Province, outcrop of these strata 
covers several thousand square kilometers.  

Fig. 1. Geographic and location map of north Kerman area. Main coal mines represented by numbers 1-9.
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Additionally, extensive outcrops of Paleozoic 
deposits with suitable lithology as potential for 
hydrocarbon source rocks are reported in the 
central parts of Iran, such as Kerman Province 
(Abbasloo et al., 2013). Considering the fact 
that fourteen petroleum systems with Upper 
Jurassic source rocks contain one-fourth of the 
world’s discovered petroleum (Klemme, 1994), 
study of Jurassic source rocks is important in 
Iran.

In the Kerman area, several coal mines (various 
types) are in operation (Fig. 1). Existence of gas 
(CH

4
, H

2
, CO

2
, N

2
…) in these coal mines is one 

of the undesirable factors for exploitation and 
unfortunately sometimes gas explosion occurs. 
Moreover, gas seepage and rarely oil seeps 
have been observed in the area. For example, 
it has been observed that after several years of 
Babnizu coal mine closure, gas outflow from 
mine wells continues.

Organic geochemical assessment for 
hydrocarbon potential of the Jurassic strata, as 
economic resources, is the main purpose of this 
research. These deposits have been subdivided 
into four stratigraphic formations (Nayband, 
Shemshak, Badamu and Hojedk), and we 
focus on the Hojedk formation (Bajocian-
Bathonian) only. Therefore, defining the 
situation of stratigraphy, organic geochemistry 
and hydrocarbon potential of the succession 
was considered. Determination of TOC value, 
kerogen types and thermal maturity of organic 
matter in these deposits are the most important 
evaluations in this area.

ــــــــــــــــــــــــــــــــــــــــــــــــ

Geological setting

According to Zarand 1:100,000 geological 
map (Vahdati Daneshmand, 1995) and 
1:50,000 geological map of the Kerman 
coal deposits (Technoexport, 1969), in the 
northern Kerman area, a very thick sequence 
of different formations from Upper Proterozoic 
to Quaternary has been exposed. Due to 
the importance of Mesozoic deposits in the 
generation of hydrocarbon resources, these 
formations are studied in more detail.

General structure of the area is a large 

syncline with the northwest - southeast 
direction axis direction (Fig. 2) which is called 
Kerman coaly syncline (KCS). Geological 
studies of Triassic-Jurassic deposits in northern 
Kerman province were carried out for the first 
time by Huckriede et al (1962) and Poliansky 
and Safronov (1974). According to Poliansky 
and Safronov (1974), these formations are 
subdivided into 8 stratigraphic suites. These 
suites have been named as Dahrud, Darbidkhun 
and Toghrajeh of Triassic, and Neizar, Babnizu, 
Gumrud, Dashtkhak and Asadababd of Jurassic 
age. Based on nomenclature of the Mesozoic 
strata in Zarand area (Vahdati Daneshmand, 
1995), the equivalent of these stratigraphic 
suites are Naiband, Shemshak, Badamu and 
Hojedk formations (Fig. 3).

A total of 6 coal horizons in the Mesozoic 
sequence in the KCS is known and named as A, 
B, C, D, E and F (Fig. 3). Each of these horizons 
consists of many coal seams; for example, 
the D horizon contains over 20 thin to thick 
coal layers. Relatively, the D horizon is more 
important than others and lies in the Hojedk 
Formation. This formation consists of shale, 
sandstone, argillite and carbonate interlayers. 
Carbonate interlayers of Hojedk Formation 
and ammonite (belemnite) bearing limestone 
of Babnizu suite (Badamu Formation) under 
the Hojedk Formation indicate the presence of 
marine environment. 

Presence of gas bearing coal seams in 
the Hojedk Formation (D and E Horizon) and 
gas seeps accompanied with coal mines has 
led us to the hypothesis that the gas (and 
probably oil) reservoirs may be formed in this 
area. In order to investigate this hypothesis, a 
total of 13 sections of Hojedk Formation were 
evaluated geochemically. These sections are 
shown in Fig. 2 and consist of Eshkeli, Hojedk, 
Tikdar, Babnizu, Darbidkhun, north Darbidkhun, 
Sarapardeh, Khomrud, south and main Pabdana, 
Komsar, Hashuni and Hamkar. 

ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

Materials and Methods 

For the purpose of organic geochemical 
evaluation of Hojedk Formation and 
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considering principles of sampling (Hunt, 1996), 
46 samples were collected from exposed black 
(and gray) shale in 6 sections. Furthermore, 30 
samples were collected from D horizon coal 
seam. Moreover, 2 samples were collected 
from E horizon at Hamkar mine (Fig. 2). These 
samples (coal and carbonaceous shale), in the 
first step, were crushed, ground  and dried at 
105 °C oven. All samples were then analyzed by 
Rock-Eval II pyrolysis in the Research Institute of 
Petroleum Industry (RIPI) in Tehran. Geochemical 
parameters S1, S2, S3 and Tmax were obtained 
from pyrolysis and based on these parameters, 
the values of total organic carbon (TOC), 
hydrogen index (HI), oxygen index (OI), total 
production index (TPI), pyrolysed carbon 

(PC) and remnant (residual) carbon (RC) were 
calculated. The method of calculation of these 
parameters is presented in Table 1 briefly.

In the next step, 37 samples of coal and shale 
(with the best TOC contents) were analyzed 
for study of organic material. Petrography of 
organic matter and measurement of vitrinite 
reflectance were conducted by a Leitz-MPV-
SP polarizing microscope equipped with 
photomultiplier in the same laboratory as 
pyrolysis (RIPI). A sapphire glass standard 
with 0.584% reflectance value was used 
for calibration. A combination of these two 
methods (pyrolysis and petrography) was used 
for achieving the aims of the research.

Fig. 2. A. General geological map (modified after Technoexport, 1969) and B. satellite image (after GoogleEarth) of 
Kerman coaly syncline (KCS). Location of sampling: 1. Eshkeli, 2. Hojedk, 3. Tikdar, 4. Babnizu, 5. S-Darbidkhun, 6. 
N-Darbidkhun, 7. Sarapardeh, 8. Khomrud, 9. S-Pabdana, 10. Main Pabdana, 11. Komsar, 12. Hashuni and 13. Hamkar.
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ـــــــــــــــــــــــــــــــــــــــــــــــــــ

Results and discussion

Theory
A petroleum source rock may be defined 

as fine-grained sediments that has generated 
and released enough hydrocarbons to form 
an accumulation of oil and gas while potential 
source rock is one that is not mature to generate 
petroleum in its natural setting but will form 
significant quantities of petroleum when 
required thermal maturity is attained (Hunt, 
1996; Hunt et al., 2002).

Accurate characterization of the oil 
generation potential of source rocks is essential 

for hydrocarbon accumulation assessment 
in a petroleum system (Kwan-Hwa Su et al., 
2006). The petroleum potential of any source 
rock is evaluated by determining the quantity, 
type and thermal maturity of organic matter 
contained in such rock. These parameters are 
discussed briefly in Table 2.

As presented in Table 2, the quantity of 
organic matter in source rocks is usually 
expressed as the total organic carbon (TOC). The 
minimum acceptable TOC values for various 
types of source rocks are 0.5% for shales, 0.3% 
for carbonates and 1.0% for clastic type rocks 
(Killops and Killops, 1993). A minimum of 1.5-2% 
TOC has generally been accepted for defining 

Table 1. Rock-Eval parameters and calculations (Johannes et al., 2007).

Parameter Formula Description

S1 (mgHC/g Rock) -- Free hydrocarbon (HC)

S2 (mgHC/g Rock) --
 Hydrocarbon generated through
thermal cracking

S3 (mgCO2/g Rock) --
 Amount of CO2 produced during
pyrolysis

S4 (mgCO2/g Rock) --
 Amount of CO2 produced during
combustion

Tmax (°C) -- The temperature of S2 peak

PI S1/(S1+S2) Production Index

PC (%)
0.1[.83(S1+S2)+0.273S3+
0.429(S3CO+0.53S3´CO)]

Pyrolysable organic carbon

RC (%) RC CO+ RC CO2 Residual organic carbon

TOC (%) PC+RC Total organic carbon

BI (mgHC/g TOC) 100S1/TOC Bitumen Index

HI (mgHC/g TOC) 100S2/TOC Hydrogen Index

OI (mgCO2/g TOC) 100S3/TOC Oxygen Index
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good source rocks (Hunt, 1996).
The amount of hydrocarbon isolated from 

the bitumen extracted from finely ground  rock 
samples can also provide a useful indication of 
whether any oil potential exists. Oil source rocks 
are generally considered to require a minimum 
hydrocarbon content of 200-300 ppm (Killops 
and Killops, 1993). The genetic potential (GP) 
expressed in milligram hydrocarbon per gram 
of rock (mgHC/g rock) can also be used to 
evaluate the maximum quantity of hydrocarbon 
that a particular rock had already generated (S1) 
and would be generated (S2) if exposed to a 
sufficient prolonged thermal stress i.e. (S1+S2). 
Both the S1 and S2 values can be obtained from 

the Rock-Eval pyrolysis of rocks.
The quality of organic matter contained 

in rocks can be determined by optical and 
physiochemical methods. Maceral examination 
can be carried out using reflected light 
microscopy of thin sections of the whole rock 
or of isolated organic particles. Transmitted 
light microscopy can also be used for isolated 
maceral concentrates. Shape and degree 
of transmittance or reflectance and also 
fluorescence under UV-illumination can be 
used to identify broad maceral groups (liptinite, 
exinite, vitrinite and inertinite).

Elemental analysis of kerogen concentrate 
from rock is the most reliable method of 

Fig. 3. Correlation of Mesozoic formations (not to scale), coal seams and situation of Hojedk Formation as subject of 
this study.
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characterizing the types or quality of organic 
matter. It is based on the major constituents (C, H, 
O), which have been used to define main types 
of kerogen based on the plot of H/C versus O/C 
in Van Krevelen diagram. The plot of hydrogen 
index (HI) vs. oxygen index (OI) provides an 
analogue to the van Krevelen diagram. Both 
the HI and OI can be obtained from Rock-Eval 
pyrolysis. Based on the plot of H/C vs. O/C and 
HI vs. OI, kerogen can be classified into types I to 
IV which are broadly equivalent to the maceral 
groups, liptinite, exinite, vitrinite and inertinite 
respectively for coals (Killops and Killops, 1993).

Information on the level of maturity of 
organic matter in the source rock is needed to 
determine if the source rock has reached the 
stage of hydrocarbon generation or not. The 

maturity status of source rock can be determined 
from Rock-Eval pyrolysis, petrographic and 
biomarker analyses. The major maturity 
parameters from the Rock-Eval pyrolysis are 
production index (PI) or transformation ratio 
(TR) and Tmax. These parameters increase with 
increasing maturation. The PI or TR expressed 
as the ratio of S1/S1+S2 measures the extent 
to which the genetic potential of the rock has 
been effectively utilized. It is expressed as the 
ratio of the hydrocarbon already generated 
to the total genetic potential. Generally, the 
threshold of the oil zone is fixed at about 0.1. 
The ratio reaches about 0.4 at the bottom 
of the oil window and increases to 1.0 when 
the hydrocarbon generative capacity of the 
kerogen has been exhausted. The Tmax 

Table 2. Guidelines for pyrolysis parameters (and petrographic data) of quality,
 quantity and  thermal maturity of organic matter (from Peters and Cassa, 1994).

S1+S2S2(mgHC/gRock)S1(mgHC/gRock)TOC(wt%)Quantity

0-30-2.50.50.5Poor

3-62.5-50.5-10.5-1Fair

6-125-101-21-2Good

12+10+2+2+Very good
 Kerogen

type
HI(mgHC/gTOC)S2/S3H/CQuality

I>600>15>1.5Oil

II300-60010-151.2-1.5Oil

II/III200-3005-101.0-1.2Gas and oil

III50-2001-50.7-1.0Gas

IV< 50< 1< 0.7None

TAIRo%Tmax (°C)Maturation

1.5-2.60.2 - 0.6< 435Immature

2.6-2.70.6 - 0.65435-445Early

2.7-2.90.65 - 0.9445-450Peak
2.9-3.30.9 -1.35450-470Late
> 3.3> 1.35> 470Postmature
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Table 3. Rock-Eval pyrolysis data of coal samples at KCS (raw data of this study).

 Sam.
Loc.*

S1 S2 S3 OI HI Tmax PI RC TOC S1+S2 S2/S3
 Coal
Layer

Ref.**

Ham1 5.17 98.55 1.58 2 154 449 0.05 55.34 63.95 87.17 62.37 D2 1

Ham2 1.29 20.15 24.58 37 30 454 0.06 64.77 66.55 83.29 0.82 D4  

Ham3 0.44 3.91 40.22 73 7 436 0.1 54.46 54.82 82.44 0.1 E2  

Ham4 0.59 6.57 35 73 14 439 0.08 47.66 48.25 82.59 0.19 E3  

Has1 2.05 174.95 0 0 218 454 0.01 65.53 80.22 84.05  D2 2

Has2 2.78 158.11 0 0 240 449 0.02 52.65 66 84.78  D4

Has3 1.97 147.76 0 0 209 443 0.01 58.28 70.71 83.97  D2 3

Has4 1.58 93.33 0 0 210 451 0.02 36.53 44.41 83.58  D6

Pab1 2.67 74.21 1.35 2 100 463 0.03 66.25 73.52 84.67 54.97 D3 4

Pab2 4.98 141.02 2.5 3 179 457 0.03 70.22 78.7 86.98 56.41 D2

Pab3 3.56 83.1 1.02 1 103 468 0.04 67.71 80.26 85.56 81.47 D6

Pab4 4.33 152.33 2.07 3 193 458 0.02 71.02 78.8 86.33 73.59 D2

Pab5 3.88 73.7 0.27 0 104 472 0.05 61.02 70.32 85.88 272.96 D1  

Pab6 5.03 177.01 1.9 3 238 469 0.02 67.23 74.42 87.03 93.16 D4  

Pab7 4.57 167.18 2.4 3 210 457 0.02 71.28 79.6 86.57 69.66 D2  

Pab8 2.16 107.27 1.07 1 143 473 0.02 62.02 75.15 84.16 100.25 D5  

Pab9 2.05 13.66 26.66 40 20 461 0.13 65.53 66.83 84.05 0.51 D2 5

Pab10 2.44 86.29 1.92 3 140 443 0.03 54.24 61.6 84.44 44.94 D3  

Pab11 3.76 145.65 0.47 1 229 445 0.03 51.22 63.62 85.76 309.89 D2 3

S-Pab 4.08 129.85 0.49 1 179 475 0.03 61.5 72.62 86.08 265 D2  

Kho 1.4 59.25 0 0 124 448 0.02 42.81 47.84 83.4  D2  

Sar1 8.54 151.25 2.45 3 202 443 0.05 61.7 74.96 90.54 61.73 D2  

Sar2 6.97 148.34 0 0 211 445 0.04 57.32 70.21 88.97  D3  

Sar3 6.5 171 0 0 217 442 0.04 64.23 78.96 88.5  D3  

Sar4 9.87 175.73 2.43 3 252 440 0.05 54.21 69.61 91.87 72.32 D3  

Sar5 10.73 154.38 2.47 4 229 444 0.06 53.83 67.53 92.73 62.5 D4  

Sar6 5.31 175.87 2.14 3 218 446 0.03 65.53 80.57 87.31 82.18 D5  

Sar7 4.41 174.1 2.4 3 217 445 0.02 65.53 80.35 86.41 72.54 D6  

Sar8 3.35 94.6 2.1 4 158 456 0.03 51.85 59.98 85.35 45.05 D8  

Bab 1.16 18.11 1.67 4 39 445 0.06 45.24 46.82 83.16 10.84 D2 6

Hoj 3.89 146.61 0.95 1 188 462 0.03 65.53 78.02 85.89 154.33 D2  

Esh 7.91 112.66 0.28 0 155 466 0.07 62.62 72.63 89.91 402.36 D2  

*- Sample location: Ham (Hamkar), Has (Hashuni), Pub (Pabdana), S-Pub (South Pabdana), Kho (Khomrud), Sar (Sarapardeh), 
Bab (Babnizu), Hoj (Hojedk) and Esh (Eshkeli).
**- Reference: 1. Ziaaldini (2012), 2. Safinejad (2013), 3. Dashtbozorgi et al. (2012), 4. Sohrabi (2013), 5. Mollaei (2013) and 
6. Shakibi et al. (2013).
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indicates the temperature of the maximum 
generation of S2 peak. Generally, the threshold 
of the oil zone is fixed at Tmax of 430-435 °C 
for type II and III kerogen while gas zone ranges 
from 450-455 °C and 465-470 °C for type II and 
type III respectively (Killops and Killops, 2005).

Organic petrography researchers also 
developed series of maturation indicators, the 
most reliable of which is vitrinite reflectance 
(Hunt et al., 2002). The use of vitrinite 
reflectance as a technique for determining 
the maturity of oil in sedimentary rocks was 
first described by Teichmuller (1958). Today, 
vitrinite reflectance is a widely used indicator 
of thermal stress because it extends over a 
longer maturity range than any other indicator 
(Hunt et al., 2002). Vitrinite reflectance can be 

used to assess thermal maturity in types II and 
III but cannot be used for type I kerogen due to 
absence of vitrinite. Vitrinite reflectance values 
for main phase of oil generation ranges from 
0.65-1.3%Ro and values greater than 2.0%Ro 
indicate dry gas generation (Tissot and Welte, 
1984).

Quantity of organic carbon

The first parameter in the process of 
evaluating a source rock is defining the 
quantity of organic carbon value. Values of 
TOC, S1 and S2 can provide good estimates of 
the quantity of organic carbon in a source rock 
(Peters and Cassa, 1994). In the studied samples, 
the amounts of total organic carbon from the 

Table 4. Rock-Eval pyrolysis data of shale samples at KCS (raw data of this study).

Sam. No.* S1 S2 S3 Tmax OI HI PI PC RC TOC S1+S2 S2/S3 Ref.**

Ham1 0.07 0.2 0.2 478 20 20 0.28 0.02 0.97 0.99 0.27 1.00 1

Ham2 0.06 0.23 1.6 483 68 10 0.21 0.04 2.34 2.38 0.29 0.14

Ham3 0.64 13.7 1.25 444 12 127 0.04 1.19 9.57 10.76 14.34 10.96

Ham4 0.07 0.58 0.58 463 42 42 0.11 0.05 1.32 1.37 0.65 1.00

Ham5 0.2 6.34 0.35 451 5 99 0.03 0.54 5.85 6.39 6.54 18.11

Ham6 1.66 43.7 0.22 451 1 256 0.04 3.76 13.28 17.04 45.36 198.64

Has1 0.09 0.23 1.36 443 425 73 0.28 0.03 0.29 0.32 0.32 0.17 2

Has2 0.6 23.52 0 456 0 133 0.02 2 15.69 17.69 24.12

Has3 0.14 2.35 0 456 0 226 0.06 0.21 0.83 1.04 2.49

Has4 0.19 2.42 0 470 0 109 0.07 0.22 2.01 2.23 2.61

Has5 1.11 50.08 0 449 0 204 0.02 4.25 20.35 24.6 51.19

Has6 0.27 5.75 0 455 0 179 0.04 0.5 2.71 3.21 6.02

Pab1 0.21 5.22 0 447 0 74 0.03 1.74 5.28 7.02 5.43

Pab2 0.06 0.59 0.31 580 129 246 0.09 0.05 0.19 0.24 0.65 1.90

Pab3 0.16 1.8 0.18 450 9 93 0.08 0.16 1.78 1.94 1.96 10.00

Pab4 0.12 1.33 0.13 448 11 113 0.08 0.12 1.06 1.18 1.45 10.23
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Pab5 0.09 0.61 0.69 490 66 59 0.13 0.06 0.98 1.04 0.7 0.88

Pab6 0.06 0.39 0.17 529 212 488 0.13 0.04 0.04 0.08 0.45 2.29

Pab7 0.06 0.46 0.78 472 67 40 0.12 0.04 1.12 1.16 0.52 0.59

Pab8 0.07 0.5 1.44 505 78 27 0.12 0.05 1.8 1.85 0.57 0.35

Sar 1.43 23.83 0 444 0 247 0.06 2.1 7.55 9.65 25.26

Bab1 0.64 13.7 1.25 444 12 127 0.04 1.19 9.57 10.76 14.34 10.96

Bab2 0.07 0.58 0.58 463 42 42 0.11 0.05 1.32 1.37 0.65 1.00

Bab3 0.2 6.34 0.35 451 5 99 0.03 0.54 5.85 6.39 6.54 18.11

Bab4 1.66 43.7 0.22 451 1 256 0.04 3.76 13.28 17.04 45.36 198.64

Bab5 0.2 0.19 0.1 467 31 53 0.51 0.03 0.33 0.36 0.39 1.90

Bab6 0.34 0.35 0.2 465 27 43 0.49 0.06 0.75 0.81 0.69 1.75

Bab7 0.06 0.19 0.16 441 36 43 0.24 0.02 0.42 0.44 0.25 1.19

Bab8 0.13 1.67 0.35 442 19 91 0.07 0.15 1.68 1.83 1.8 4.77

Bab9 0.06 0.13 0.03 539 6 27 0.31 0.02 0.47 0.49 0.19 4.33

Bab10 0.05 0.13 0.02 559 20 130 0.28 0.01 0.09 0.1 0.18 6.50

Bab11 0.1 0.69 0.31 448 28 62 0.13 0.07 1.04 1.11 0.79 2.23

Bab12 0.04 0.15 0.06 8 20 0.21 0.02 0.74 0.76 0.19 2.50

Bab13 0.06 0.02 0.01 25 50 0.75 0.01 0.03 0.04 0.08 2.00

Tik1 1.47 7.25 2.17 490 27 91 0.17 0.72 7.27 7.99 8.72 3.34 3

Tik2 0.11 0.44 0.26 466 36 61 0.2 0.05 0.67 0.72 0.55 1.69

Tik3 0.53 3.35 7.31 476 54 25 0.14 0.16 13.46 13.62 3.88 0.46

Tik4 0.27 2.35 6.17 501 49 19 0.1 0.22 12.41 12.63 2.62 0.38

Tik5 0.12 0.77 0.12 490 38 241 0.13 0.08 0.24 0.32 0.89 6.42

Tik6 0.16 1.26 0.18 540 33 233 0.11 0.12 0.42 0.54 1.42 7.00

Tik7 0.15 1.01 0.05 525 21 421 0.13 0.1 0.14 0.24 1.16 20.20

Tik8 0.14 1.06 0.14 460 70 530 0.12 0.1 0.1 0.2 1.2 7.57

Tik9 0.6 4.54 0.21 430 29 631 0.12 0.43 0.29 0.72 5.14 21.62

Tik10 0.18 0.66 0.09 541 53 388 0.21 0.07 0.1 0.17 0.84 7.33

Tik11 0.15 0.88 0.31 496 56 160 0.15 0.09 0.46 0.55 1.03 2.84

Tik12 0.11 1.17 0.07 588 25 418 0.09 0.11 0.17 0.28 1.28 16.71

*- Sample location as same as Table 3.
**- References: 1. Ziaaldini (2012), 2. Safinejad (2013), 3. Hemmatafza (2014). 
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Fig. 4. Comparison of TOC, S1 and S2 of coal (A, C and E) and shale samples (B, D and F) from various parts of KCS.

pyrolysis were investigated. It is clear that the 
organic carbon content of coal samples should 
be high. In these samples, TOC content varies 
from 44.41 wt% to 80.57 wt% with a mean value 
of 68.68 wt% (Table 3). Obviously, the amount 
of TOC alone may not reflect the high quality 
of the rock and other quantitative parameters 
should be considered (Fig. 4A). 

Total organic carbon content of the shale 
samples varies from 0.04 wt% to 24.6 wt% with 
a mean value of 4.16 wt% (Table 4). Comparison 

of TOC content in different samples indicates 
that all coal samples and most of the shale 
samples have sufficient organic carbon content 
as a source rock. However, TOC content of shale 
samples ranges from poor to excellent (Fig. 4B). 

In addition to the TOC, the S1 parameter is 
used to evaluate the quantity of hydrocarbon 
source rocks (Peters and Cassa, 1994). In the 
present research, S1 contents of coal samples 
varies from 0.44 to 10.73 mgHC/g rock with a 
mean value of 4.04 mgHC/g rock. Accordingly, 
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based on Peters and Cassa (1994), S1 content 
of the coal samples ranges from very good to 
excellent (Fig. 4C). Moreover, shale samples 
have S1 values from 0.04 to 1.66 (mean 0.32) 
mgHC/g rock and range from poor to good, 
but most of the samples are located at poor 
situation. In coal samples, the maximum value 
of S1 is related to Sarapardeh mine and in shale 
samples, Hashuni, Babnizu and Hamkar have 
higher values (Fig. 4D). 

S2 is the other evaluating factor in 
determining quantity of hydrocarbon source 
rocks. Indeed, this parameter is the present 
potential of source rocks and consists of 
kerogen, bitumen and heavy hydrocarbons. 
Data obtained from pyrolysis of coal samples 
show that the S2 in these samples varies from 
3.91 to 177.01 mgHC/g rock, and therefore the 
content of S2 represents very good to excellent 
condition (Fig. 4E). S2 values of shale samples of 
KCS range from 0.02 to 50.08 with a mean value 
of 6.00 mgHC/g rock and therefore, the values 
show poor to good conditions (Fig. 4F). The 
majority of these samples are plotted at poor to 
fair condition. One of the criteria for determining 

Fig. 5. Log-plot of S1 vs. S2 for determining the genetic 
potential (GP) of KCS, A. non-coal and B. coal samples.

the quantity of source rocks is genetic potential 
(GP). As presented in Table 1, this parameter is 
the sum of S1 and S2 values. Based on Peters 
and Cassa (1994), the high values of GP can 
indicate the high quantity of source rocks. The 
mean value of GP for shale and coal samples of 
KCS is 6.33 and 86.04 mgHC/g rock respectively 
(Tables 3 and 4). These values also indicate that 
both shale and coals have sufficient potential 
for hydrocarbon generation, but the coal 
samples are in much better condition. Plotting 
S1 against S2 (log-plot) also shows that the coal 
samples, compared to the shale samples, have 
higher potential and fall in the very good to 
excellent field (Fig. 5).

Briefly, quality of organic material in the 
coal samples is obviously better than the shale 
samples, but, the shale samples are not so 
undesirable. In other words, shale strata at KCS 
can also be considered acceptable as a source 
rock.

Quality of organic material 

Often when talking about the quality of 
source rocks, the amount of hydrogen and 
kerogen type is considered. The quality of the 
organic matter contained in the coal and shale 
samples was evaluated from pyrolysis data. 
Using HI vs. OI plot and HI vs. Tmax plot, the 
kerogen type and source of organic carbon in 
the source rocks can be determined.

In coal samples of KCS, the hydrogen index 
ranges from 7 to 252 with a mean value of 
160 mgHC/g rock and indicates ability of gas 
generating as well (Table 3). The hydrogen 
index of shale samples has a greater extent and 
variability. In these samples, HI values range 
from 10 to 631 with a mean value of 154 mgHC/g 
rock. Based on this parameter and considering 
the guidelines provided by Peters and Cassa 
(1994), the shale samples represent potential for 
oil and gas. Plots of HI against OI, for the samples 
are shown in Figs. 6 and 7. As shown in Fig. 6A, 
most of the coal samples have a moderate 
hydrogen index and low oxygen index. In 
contrast, variation of these two parameters 
is much more for shale samples (Fig.  6B). 

 For a more general estimate of the position 
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Fig. 6. Hydrogen index vs. oxygen index (Hunt, 1996) and position of A. coal samples and B. shale samples from KCS.

Fig. 7. Definition of kerogen types and hydrocarbon generating potential of KCS coal and non-coal samples in HI vs. 
OI cross plot.

of kerogen types, all 78 samples of coal and 
shale are plotted in a single diagram (Fig. 7). 
As shown in Fig. 7, most of the samples fall in 
the III and II/III kerogen types (55 samples, 70.5% 
of the total samples). In a lesser amount, a few 

samples (18 samples, 23% of the total samples) 
were plotted in IV type. Finally, 4 samples (5% 
of the total samples) and only one sample fall 
in the field of II and I kerogen type respectively. 
Also, it can be seen that the majority of coal 
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Fig. 8. S2-TOC cross-plot (Langford and Blanc-Valleron, 1990) and location of coal and non-coal samples.

samples are plotted near the axis of hydrogen 
index and this indicates that the samples are 
poor oxygenated compounds. Moreover, it is 
clear that most of these samples can produce 
gas and a lesser amount of oil.  

In addition to the previous plots, for 
determining the kerogen types and generating 
hydrocarbon potential, we have used S2 vs. 
TOC diagram (Langford and Blanc-Valleron, 
1990) (Fig. 8). In this diagram, two different 
clusters of samples can be seen. One of these 
clusters (arrow1) covers the non-coal samples 
and is plotted near the lower left corner of the 
diagram. In contrast, coal samples cluster with a 
more extensive area (arrow2) covers important 
parts of III and mixed II-III kerogen types fields. 
Based on this diagram, it is clear that most coal 
samples are located in the area of gas (and gas 
and oil) production. It should be noted that the 
results of this diagram are confirmed by the 
results of HI-OI plots (Figs. 6 and 7).  

ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

Thermal maturity of organic material

Pyrolysis data

The quantity and quality of organic matter 
alone is not sufficient to produce adequate 
hydrocarbon. In addition to these two 
factors, maturity of organic matter should be 
adequate enough to generate oil and gas. As 
mentioned above, thermal maturity can be 
reflected by pyrolysis data. Tmax alongside the 
production index (PI) are the two determining 
parameters. Moreover, using HI vs. Tmax plot 
is one of the multipurpose diagrams in organic 
geochemistry. This diagram can be used to 
determine the thermal maturity and kerogen 
types.

According to available pyrolysis data, the HI 
vs. Tmax plot (Hunt, 1996) was drawn for KCS 
samples (Fig. 9). As shown in Fig. 9A, all of the 
coal samples fall within the range of 430 to 
470 °C tmax, and therefore thermal maturity of 
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Fig. 9. HI vs. Tmax cross plot (Hunt, 1996) for determining thermal maturity and kerogen types of KCS.
A. Coal samples and B. Non-coal samples.

the samples is presently within the oil window. 
Locating all data between lines of 0.5% and 
1.35% vitrinite reflectance has confirmed the 
result too.     

Despite the limited extension of coal 
samples in HI vs. Tmax, shale samples cover 
a wide range in this plot (Fig. 9B); therefore, 
maturity of these samples ranges from mature 
to overmature condition. Considering this plot 
and maturity conditions, coal samples are in the 
stage of oil and wet gas production and shale 
samples are in the stage of wet gas, condensate 
and dry gas. Also, the values of hydrogen index 
represent potential of gas and oil for majority 
of samples.  

ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

Petrography and vitrinite reflectance

In order to define thermal maturity and 
organic petrography, microscopic studies in 
reflected light were used. On this basis, the 

organic composition of 36 coal and shale 
samples was investigated. Although maceral  
identification in all samples was done, only 
8 cases were examined to determine the 
percentage of macerals.

These investigations were carried out 
according to the definition and description of 
macerals given by Taylor et al. (1998). 

In a general overview, all samples of KCS are 
vitrinite rich (Table 5). The percentage of vitrinite 
ranges from 49.3% to 75% with a mean value 
of 60.80%. In terms of frequency, total fusinite 
plus semifusinite macerals with an average of 
23.8 % are in the second rank (Fig. 10). 

The liptinite group contains cutinite, 
sporinite, exsudatinite, fluorinite, resinite, 
bituminite, suberinite and liptodetrinite. 
Liptinite, as a hydrogen rich maceral, can be 
found in all samples of KCS considerably (Table 
5, Fig. 10).

 This maceral as an accessory maceral ranges 
from 5% to 22.2% with an average of 15.46%. 
The highest value of liptinite (22.2%) is related 
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Table 5. Percentage of maceral groups in coal samples of KCS (data arter Shayestehfar et al. 2007).

Table 6. Petrography and vitrinite reflectance in emersion oil of coal and shale samples.

Fig. 10. Comparative frequency of maceral groups 
from KCS coals, (data after Shayestehfar et al. 2007).

Sample
No.

Vitrinite % Fusinite % Semifusinite
%

Liptinite %

Ham1 75 5 15 5

Ham2 63.5 9.78 10 17.6

Ham3 65 10 12 11

Has 54 18 12 16.8

Kom 53.3 18.6 13 16.7

M-Pab 49.3 19.7 9 22.2

Dar 66.81 9.1 8 16.38

Tik 60 14 8 18

Avg. 60.86 13 10.8 15.46

to Main Pabdana mine. Relative high amount 
of liptinite in Pabdana coal mine has been 
reported previously by Shayestehfar et al. 
(2007). However, this amount of liptinite in KCS 
coal samples indicates oil production capability 
by the rock. Moreover, Jones (1987) suggested 
that if the liptinite contents (exinite plus 
resinite) reach over 10-15% in coal, in addition 
to increasing the hydrogen index, it is possible 
to generate liquid hydrocarbon by such coal. 

Location Sample type Maceral type(s) Ro% Variation Tmax

Sarapardeh

Coal-D2 F 1.3

Min: 0.5

Max: 2

Mean: 1.25

--

Shale V+L 2 --

Shale F+V 0.6 --

Coal-D3 F+L 0.85 --

Shale F 0.5 --

Coal-D4 V+F 1.7 --

Coal-D5 V+F 2 --

Coal-D6 F+V 0.5 --

Coal-D8 F+V 1.8 --
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Hashuni

shale V+F+L 1.9

Min: 0.73

Max: 2

Mean: 1.48

--

Coal-D6 F+V 1.5 --

shale V+L 2 --

shale F 1 --

Coal-D4 V+F 1.8 --

shale F 1 --

shale F 1.5 --

Coal-D2 V+L+F 2 --

shale F 1.4 --

Coal-D2 0.73 --

Hamkar
Coal-D2 V+S+F 0.8 Min: 0.8

Max: 0.89

--

Coal-D4 V+S+F 0.89 --

Pabdana

S-Pabbana

Shale F 0.9

Min: 0.59

Max: 1.9

Mean: 1.02

469

Coal-D3 L 1.9 463

shale F 1.1 473

shale F 1.1 472

Coal-D2 F+V+L 1.2 457

shale F+L 1.1 457

shale V 1.2 458

Coal-D4 V+F 1 469

shale V+F+L 0.9 447

Coal-D2 V+L 0.59 461

Coal-D2 V+L 0.69 443

Coal-D2 -- 0.71 --

Coal-D2 -- 0.96 --

Tikdar

shale V+F+L 0.77 Min: 0.77

Max: 0.92

Mean: 0.84

--

shale V+F+L 0.92 --
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Fig. 11. Comparative assessment of vitrinite reflectance variations in different location of KCS.

Table 7. Summarized geochemical characteristics of KCS coal and shale samples.

In addition to petrography and definition 
of macerals, in 36 samples of coal and shale, 
measurement of vitrinite reflectance was done 
by polarizing microscope and photomultiplier. 
These measurements were carried out 
using a Leitz-MPV-SP microscope in organic 

petrography laboratory of Research Institute of 
Petroleum Industry. A sapphire glass standard 
with 0.584% reflectance value was used for 
calibration. The reflectance of vitrinite remains 
the most definitive measure of coal rank 
and maturity of source rocks, because, it is 
unaffected by oxidation, by changes of sample 

Locality
 Sample

Type

Quantity Quality
 Thermal
maturity

 Hydrocarbon
potential

 Oil or Gas
Seepage

TOC
%

S1 S2

HI
Avg.

 Krogen
Type S2/S3

Tmax
°C PI Ro% None Gas

 Gas
 and
Oil

Average

Hamkar

 Coal (D,
E)

E G E
50-
200

III 15.8 EM 0.07 0.84 ¢

Shale E P E
50-
200

 III 38.3 EM 0.07 ¢

Hashuni

Coal E VG E
200-
300

III, II-III 243 PM 0.01 1.56 ¢ ¢

¢

Shale E P E
50-
200

III 14.05 LM 0.08 ¢

Pabdana

Coal E VG E
50-
200

III 118.57 LM 0.03 1.03 ¢ ¢

¢

Shale G P P
50-
200

III 3.7 OM 0.09 ¢
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type, or by carbonate mineral matrix.
As can be seen in Table 6, in the majority of 

the samples, vitrinite was found as main maceral. 
Also, the mean value of this maceral in 6 semi-
quantitative measurements (Table 5) reaches 
60.86%. Measurements of vitrinite reflectance 
in various location and sample types revealed 
that this parameter ranges from 0.5% to 2% 
with an average of 1.18%. These values clearly 
show that the majority of samples lie within the 
oil window. 

A comparative estimate (Fig. 11) indicates 
that across regions, Hashuni, Sarapardeh and 
Pabdana have the highest Ro% and maturity 
(with average values of 1.48%, 1.25% and 1.02% 
respectively). However, because of scarcity of 
samples, this result should not be considered 
definitive. This estimate also shows that the 
average maturity of the samples correspond to 
the early to late oil window.

  

ــــــــــــــــــــــــــ

Conclusion

In the present research, the quantity, quality, 
thermal maturity and hydrocarbon potential 
of D (and E) coal horizon and its carbonaceous 
country rocks (Hojedk Formation), as a potential 

source rock were studied in KCS. To achieve 
these goals, the pyrolysis and petrographic 
techniques were used. Raw data were evaluated 
by standard procedures and hydrocarbon 
potential of the area studied. Based on this 
analysis, the following results were obtained 
(Table 7).

 The quantity of carbonaceous rocks and 
coal seams in KCS using TOC content, S1 and S2 
parameters were evaluated and it was found 
that in most cases, the amount of organic 
carbon is excellent. Due to the nature of the 
coal samples, the high organic carbon content 
is obvious (Fig. 4A). However, the shale samples 
(Fig. 4B) also have an acceptable condition. The 
value of S1 ranges from poor to excellent and 
coal samples have a better condition compared 
to shale samples (Figs. 4C and D). Finally, 
according to the S2 parameter as a quantity 
indicator, it was found that majority of samples 
fall in the excellent condition (Figs. 4E and F). 

In order to evaluate the quality of shale and 
coal samples, hydrogen index (HI) was used. 
For the purpose of simplification, average of HI 
from each location was classified (Table 7) and 
compared to Peters and Cassa (1994) guidelines. 
Although the range of hydrogen index values 
of various samples of KCS is relatively high, the 
data can be categorized and placed in one of 

Khomrud Coal E G E
50-
200

III - PM 0.02 ¢

Sarapardeh

Coal E E E
200-
300

III, II-III 66.05 PM 0.04 1.25 ¢

Shale E G E
200-
300

III, II-III - EM 0.06 ¢

Babnizu

Coal E VG E 0-50 IV 10.84 PM 0.06 ¢ ¢

¢

Shale VG P VG
50-
200

III, IV 19.68 PM 0.24

Tikdar Shale P P P
200-
300

III, II-III 7.96 OM 0.18 0.84 ¢ ¢ ¢

Hojedk Coal E E E
50-
200

III 154.33 LM 0.03 1.05 ¢

Eshkeli Coal E E E
50-
200

III 402.36 LM 0.07 0.73 ¢
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the five definitive classes (0-50, 50-200, 200-300, 
300-600 and >600). Based on this classification, 
the average values of HI of 9 locations (from 14 
locations), fall in the 50-200 class, four cases 
lie in the 200-300 class and only one case is 
classified in 0-50 class

 Thus, it is clear that the majority of the 
samples are capable of generating gas and 
some are capable of generating oil and gas.  

As can be inferred from Figs. 6, 7, 8 and 9 
(and Table 7), type III kerogen is dominant in 
most cases, but in some cases (especially in 
coal samples), mixed II/III kerogen type also has 
been detected (Fig. 8). Considerable amounts 
of liptinite in some coal samples (up to 22% 
at Pabdana) support this finding. Therefore, 
kerogen types in Hojedk formation are suitable 
for gas and oil generation. Moreover, high 
S2/S3 ratio in most cases (Table 7) support oil 
generation hypothesis in the KCS.

After determining the amount and quality of 
organic matter, thermal maturity evaluation of 
the KCS was conducted.

 According to Tmax values, it can be stated 
that the majority of the samples have passed 
adequate maturation to generate oil and gas. 
Table 7 also shows that in most cases, Tmax 
reflects early to late maturation corresponding 
to oil window and only in a few cases, 
overmaturation occurred. Vitrinite reflectance 
(Ro%) studies also confirmed that in most cases 
(Fig.  11), the maturity of the samples are in 
accordance to the oil generation window (top 
to bottom).

 Finally, it can be stated that the quantity, 
quality (kerogen types) and thermal maturity 
of coal seams and its country rocks of Hojedk 
formation in KCS have sufficient potential for 
gas and to a lesser amount oil generation. 
Existence of gas and rarely oil seepage in the 
area confirm this claim.   

ـــــــــــــــــــــــــ
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Abstract

 The concentration of H
2
S in the inlet acid gas is an important factor that sulfur plant designers 

must consider when deciding on the right technology or configuration to obtain high sulfur 

recovery efficiency. Using sterically-hindered solvents such as promoted tertiary amines and various 

configuration for gas treating unit are several alternatives for acid gas enrichment (AGE) to reduce 

the concentration of carbon dioxide and heavy aromatic hydrocarbons while enriching the H
2
S 

content of SRU feed stream. The present article uses combinations of Aspen-HYSYS software and 

two distinct networks (namely, Regularization network and adaptive neuro-fuzzy inference system) 

to compare the AGE capability of sulfinol-M (sulfolane + MDEA) solvent at optimal concentration to 

traditional MDEA solution when both of them are used in a conventional gas treating unit (GTU). 

The simulation outcomes demonstrate that the optimal concentration of Sulfinol-M aqueous 

solution (containing 37 wt% Sulfolane and 45 wt% MDEA) will completely eliminate toluene and 

ethylbenzene from the SRU feed stream while removing 80% of benzene entering the GTU process. 

Furthermore, mole fraction of H
2
S in the SRU feed stream increases the conventional 33.48 mole% 

to over 57mole%. Increased H
2
S selectivity of optimal Sulfinol-M aqueous solution will elevate the 

CO
2
 slippage through sweet gas stream at around 4.5mole% which is still below the permissible 

threshold. 

Keywords: AGE, BTEX, Regularization network, MLP, ANFIS
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Introduction

Sour unconventional natural gas often 
has a higher CO

2
:H

2
S ratio than conventional 

gas sources, which results in leaner acid 
gas feed streams (lower H

2
S concentration). 

Moreover, acid gases from both of these 
sources frequently contain contaminants 
such as heavy hydrocarbons (e.g. Benzene, 
Toluene, Ethylbenzene and xylene (BTEX)), 
ammonia and methanol which all can cause 
operating problems in sulfur recovery units 
(SRUs). Excessive amount of such impurities 
in acid gas stream entering SRU Claus process 
drastically decreases the combustion chamber 
temperature and reduces the overall elemental 
sulfur recovery efficiency (Chludzinski et al.,  
1993). A preferential method for reducing the 
concentration of these contaminants in the 
acid gas of SRU feed stream is to utilize proper 
acid gas enrichment (AGE) process at upstream 
of the sulfur recovery unit.

The recent development and success of 
applying various kinds of machine learning 
modeling approaches to tackle various complex 
engineering problems has attracted much 
attention to their potential applications in the 
natural gas industry (Zhou et al., 2013). These 
powerful tools are traditionally used for their 
capability of nonlinear mapping and lack of 
necessity for detailed mechanistic knowledge 
(Anifowose et al., 2011). The capability of 
artificial neural networks (ANNs) and adaptive 
neuro-fuzzy inference system (ANFIS) to model 
nonlinear and highly complex systems in order 
to extract underlying truth from noisy data are 
memorable.

Acid gas enrichment process depends 
on multiple input variables which possess 
strong coupling between them with severe 
uncertainty. Using conventional modeling 
techniques to model such nonlinear and highly 
complex systems with large numbers of input 
and output variables make the application of 
ANNs along with ANFIS particularly attractive.

The principle of acid gas enrichment process 
originates from proper selective removal of H

2
S 

at the presence of other impurities (specially 
CO

2
) which can be accomplished in three 

distinct routes (Seagraves et al., 2011; Palmer et 
al., 2006):

A) Sterically-hindered amines, controlling 
the selectivity primarily in the absorber.  
B) Various design (configuration) options 
of gas treating unit (GTU) and absorber 
internals, affecting the difference in CO

2
 

and H
2
S mass transfer kinetics. 

C) Promoted tertiary amines, focusing 
more on enhanced regeneration and thus 
leading to lower H

2
S loadings.

For selective H
2
S absorption in the first 

route, a molecular structure would be selected 
which suppresses carbamate formation and, 
consequently, the rate of CO

2
 absorption, 

without affecting the rate of H
2
S absorption. 

Sterically hindered amines, either primary 
or secondary amines with large bulky alkyl 
or alkanol groups attached to the nitrogen 
(Seagraves et al., 2011), show suitable result for 
selectively absorbing H

2
S in the presence of 

CO
2
. Appropriate molecular configuration leads 

to an unstable carbamate formed with CO
2
 

which is readily hydrolyzable, resulting in the 
formation of bicarbonate as the end product. 
This phenomenon results in a theoretical ratio 
of one mole of CO

2
 per mole of amine. 

The chemistry of acid gas reactions with 
sterically hindered amines is discussed in some 
detail by Sartori and Savage (1983) and by 
Weinberg et al. (1983). Furthermore, Chludzinski 
and Iyengar (1993) describe the application of 
sterically hindered amines to AGE units as well 
as outline the operating conditions and some 
of the possible unit configurations. FLEXSORB-
SE amine, which was recognized by Exxon-
Mobil scientists in 1981, is a kind of sterically 
hindered solvent that was successfully used 
for selective H

2
S absorption purposes (Parks et 

al., 2010). Different kinds of sterically hindered 
amines such as amino-2-methyl-1-propanol 
(AMP), tertiary butyl amino ethanol (TBE), 
tertiary butyl amino ethoxyethanol (TBEE), 
MAMP (2-N-methylamino-2-methyl-propan-
1-ol), EETB (Ethoxyethanol-t-butylamine), 
MEEETB (Methoxyethoxyethoxyethanol-tert-
butylamine) were tested for their selectivity 
toward H

2
S (Mandal et al., 2004; Lu et al., 2006; 
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Siskin et al., 2013).   
In the second route, necessary modifications 

can be applied to an existing gas treatment 
unit (GTU) configuration while using the 
conventional solvent. Various schemes are used 
to enhance the selectivity of H

2
S over CO

2
 (Mak 

et al., 2015; Al Utaibi et al., 2010; Way et al., 2013).
Finally in the third route, the advanced 

promoter (e.g. sulfolane) would be added to 
conventional solvent in order to enhance the 
selectivity of tertiary amines and also make the 
release of H

2
S from rich amine in the regenerator 

column easier. Tetra methylene sulfone (TMS) 
or sulfolane is an excellent industrial solvent 
with capability of removing H

2
S, COS, and CS

2
 

from various sour gas streams. Aromatic and 
heavy hydrocarbons such as BTEX and CO

2
 are 

soluble in sulfolane to a lesser degree (Vahidi 
et al., 2013). Sulfolane is usually blended with 
alkanol amines (specially methyl diethanol 
amine (MDEA)) to form adequate mixed solvent 
(known as sulfinol-M) to capture various 
impurities, simultaneously (Vahidi et al., 2013; 
Mokhatab et al., 2012). 

Different powerful software along with 
various mathematical techniques have been 
used for simulation and modeling of gas 
treating unit respectively. The results of some 
recent works will be reviewed in the following 
section.   

Darwish and Hilal (2008) used ANN to detect 
and diagnose process faults in the dehydration 
plant. They have concluded that ANN 
successfully detects the disturbance severity 
levels in the input variables considered for the 
contactor. Faults in the stripper–regenerator 
unit have been perfectly predicted by the ANN 
for two symptoms (TEG emissions and BTEX 
emissions in vents).

Fu et al. (2013) developed a neural network 
to predict overall mass transfer coefficient 
for carbon dioxide absorption into aqueous 
diethylenetriamine (DETA). The inlet CO

2
 

loading, solvent concentration, liquid flow 
rate, CO

2
 partial pressure, and liquid feed 

temperature were selected as input parameters. 
They have reported that ANN is a suitable tool 
for predicting the absorption performance of 
packed columns.

Angaji et al. (2013) examined the performance 
of various concentrations of sulfolane in the 
Sulfinol solvent for GTUs of Khangiran natural 
gas refinery. They concluded that providing 
40.2%wt sulfolane, 21.2% wt H

2
O and 37.7%wt 

MDEA in liquid mixture of Sulfinol-M could 
increase the capacity of sour gas treatment 
from 173 to 220 MSCMH. The version of Aspen 
Plus software which has been used for the 
entire simulation is unable to provide proper 
property package for mixtures of MDEA-
sulfolane solutions. Limited parameters such as 
condenser and reboiler duties were investigated 
in order to optimize sulfolane concentration.

Abdulrahman and Sebastine (2013) used 
Aspen HYSYS V.7.3 to simulate the Khurmala 
(Iraqi-Kurdistan region) gas sweetening process. 
They have tested several amine blends (MEA 
and MDEA), circulation rate and concentration 
instead of DEA with flow rate of 400 m3/hr. 
Their optimization showed that using DEA 35% 
is the best recommended process.

Abdulrahman and Sebastine (2013) analyzed 
the effect of the lean amine temperature on 
the acid gas content in the sweetened gas 
and saturated the amine solution by using 
Aspen HYSYS software. They reported that the 
optimal temperature for the regenerated amine 
solution, at which the maximum sweetening 
of the gas is achieved with minimum amine 
circulation rate, is within the range 38°C-45°C.

Ghanbarabadi and Karimi (2014) simulated 
Khangiran gas refinery in order to optimize 
the concentration and flow rate of MDEA, 
thermal load of restoration and other operating 
parameters by using Aspen HYSYS software. 
They reported that optimum performance of 
MDEA solvent is 45-50% wt concentration at 55-
63˚C.

The superior performances of ANN and 
ANFIS have been proved in a wide variety of 
applications (Zhou et al., 2013; Rahmanian et al., 
2012).

 In the present article, a conventional GTU 
is simulated by resorting to the powerful 
Aspen-HYSYS software V.8.3. Instead of using 
the traditional MDEA solution as solvent, 
various concentrations of MDEA and sulfolane 
(known as sulfinol solution) will be used to 
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predict the concentration of H
2
S and BTEX 

components in the acid gas stream leaving 
GTU. The above version of Aspen-HYSYS 
software is capable of providing adequate 
property package for all mixtures of MDEA-
sulfolane solutions. The limited data collected 
from Aspen-HYSYS simulations using various 
sulfinol concentrations will be employed as the 
training data to optimize an adaptive neuro-
fuzzy inference system and regularization 
network. The trained network performances 
will be initially compared with the performance 
of conventionally used neural network toolbox 
of MATLAB software and finally they will be 
recruited to provide reliable interpolation 
hyper-surfaces for practical uses. 

ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
Importance of AGE and BTEX 
elimination in a conventional GTU

One of the keys to achieving good Claus 
plant performance is to maintain a stable flame 
and high temperatures in the main reaction 
furnace (>926°C, 1700°F). Higher temperatures 
increase the conversion of H

2
S to elemental 

sulfur.  Contaminants in the acid gas stream can 
seriously impact the operability and reliability 
of a sulfur plant. Carbon dioxide and other 
impurities in the acid gas feed stream to SRU 
unit acts diluents, reducing reaction furnace 
temperatures and hence, drastically limit the 
elemental sulfur capacity. In the worst scenario, 
excessive amounts of such inert constituents 
can completely quench the combustion 
chamber flame. 

To achieve high temperatures in the Claus 
furnace an acid gas feed stream typically 
requires at least 50 mole percent H

2
S.  If the 

H
2
S concentration in the acid gas from the acid 

gas removal unit is lower than 50%, several 
Claus plant design options are available out 
of which the most common is the split flow 
design (Mokhatab et al., 2012; Kidnay et al., 
2006). Although other options such as split 
flow design, acid gas or air preheat plus oxygen 
enrichment are available to increase the overall 
sulfur recovery efficiency none of them is as 
preferable as the acid gas enrichment process.      

Effective elimination of carbon dioxide 

from acid gas streams via a successful acid gas 
enrichment scenario can dramatically decrease 
the size of a conventional Claus unit in the 
design stage or significantly increase the plant 
throughput for an existing SRU facility. 

Two significant problems occur when high 
concentrations of BTEX are passed through SRU.  
The first is general deactivation of the catalyst 
in the catalytic chamber due to accumulation of 
carbon and/or carsul (a variety of heavy carbon-
sulfur compounds) in the pores of the catalyst 
due to coking of the hydrocarbons (Kidnay et 
al., 2006; Zarenezhad et al., 2008). This problem 
affects all Claus catalysts, both alumina and 
titania. The second problem with BTEX is rapid 
deterioration of hydrolysis catalysis in titania 
catalysts. Nowadays, titania catalysts are used 
in many plants that require high sulfur recovery 
efficiency, because it is proved that this catalyst 
significantly improves the degree of COS and 
CS

2
 hydrolysis over that of alumina catalysts, 

especially at lower temperatures.
Unfortunately, field experience and recent 

laboratory testing have shown that titania 
catalysts are especially prone to rapid decline 
in the amount of hydrolysis they catalyze when 
exposed to BTEX. It is therefore crucial to oxidize 
and recover energy from BTEX completely 
in the combustion chamber. Incomplete 
destruction of such aromatic compounds can 
result in contamination of the final elemental 
sulfur product (production of dark yellowish 
sulfur) and deactivation of the catalysts. Several 
studies have shown that catalyst coking has 
been tied directly to aromatic content of acid 
gas stream with toluene being the primary 
contributor (Crevier et al., 2001; Zarenezhad, 
2011).

Installing proper acid gas enrichment 
process or using suitable adsorption system 
such as carbon active is an available alternative 
to mitigate BTEX content of SRU feed stream at 
upstream section.

Various mixtures of sulfolane and MDEA 
solutions (sulfinol solvent) will be considered for 
their performances of the enrichment efficiency 
in the Khangiran refinery GTU. Effective AGE 
increases the H

2
S content of SRU feed stream 

and alleviates SRU existing complications such 
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as flame temperature and BTEX issues.

Characteristics of Sulfinol solvent
Mixed or hybrid (or composite) solvents 

composed of a non-aqueous physical solvent 
and an aqueous amine take advantage of 
both physical and chemical absorptions. The 
best known example of such mixed solvents 
is the Sulfinol solvent which was initially 
introduced by Shell Company in 1963. It is 
a mixture of Sulfolane (C

4
H

8
O

2
S), water and 

diisopropanolamine (DIPA, C
6
H

15
NO

2
) or MDEA 

known as Sulfinol-D or Sulfinol-M, respectively. 
The sulfinol-M solution is mainly used for 

the selective absorption of H
2
S from natural 

gas in the presence of CO
2
. As it was mentioned 

before, solubility of aromatic hydrocarbon and 
carbon dioxide are in a lesser degree compared 
to the sulfur compounds (Mokhatab et al., 2012). 

The advantages of sulfinol-M are higher 
acid gas loading, lower energy requirements 
for regeneration, lower corrosion rates, 
relatively poor hydrocarbon selectivity and 
lower foaming tendency. Thermodynamic 
modeling of aqueous sulfolane solutions (in 
the absence of alkanolamines) for prediction of 
their thermal and physical properties have well 
received remarkable attention in numerous 
studies (Zong et al., 2011; Shokouhi et al., 2013).  

Optimization of sulfolane concentration 
in the proposed sulfinol-M solvent instead 
of MDEA solvent in the Khangiran natural 
gas refinery treating unit via Regularization 
network and ANFIS is the essence of this work. 
In the following section, brief review of RN and 
ANFIS will be presented. 

ــــــــــــــــــــــــــــــــــــــــــــ
Intelligent Systems

Modern computer hardware technology 
together with intelligent software solutions 
makes it possible to process the large amount 
of data at low cost. Some well-known analysis 
methods and tools that are used for data 
mining are statistics (regression analysis, 
discriminant analysis, and principal component 
analysis), time series analysis, decision trees, 
cluster analysis, neural networks, fuzzy models 
and neuro-fuzzy models. These approaches are 

particularly useful when data are abundant and 
modeling knowledge is missing (Zhou et al., 
2013). 

Adaptive neuro-fuzzy inference system  
(ANFIS)

The learning ability of neural networks 
combined with fuzzy modeling has created the 
adaptive network based fuzzy inference system 
(FIS). ANFIS is a rule-based fuzzy logic model 
whose rules are developed during the model 
training. In general, rule based models can be 
classified into four categories: fuzzy relational, 
linguistic, neural network based, and Takagi–
Sugeno–Kang (TSK) fuzzy models. ANFIS is the 
combination of low level calculation of ANN 
along with the high reasoning ability of a fuzzy 
logic system (Rahmanian et al., 2012).  At the 
computational level, ANFIS can be regarded 
as a flexible mathematical structure that can 
approximate a large class of complex nonlinear 
systems to a desired degree of accuracy. 
Appendix A contains a detailed review of ANFIS 
rules and related structure. Figure 1 shows block 
diagram representation of training algorithm 
for optimized ANFIS used in the present article.

The ANN method, either alone or in 
combination with the least squares method, 
is employed for tuning of the adjustable 
parameters for obtaining an optimized ANFIS 
structure during the training phase. For a 
fixed value of consequent parameters, back-
propagation (BP) ANN based on gradient 
descent method finds the optimal value of 
premise parameters. The output of the ANFIS is 
calculated first by employing the consequent 
parameters. Next, the output error is used to 
adjust the premise parameters by means of a 
standard BP algorithm. When both the premise 
and consequent parameters need tuning, the 
combination of least squares and gradient 
descent method based BP-ANN is adopted 
for parameter optimization. The least squares 
method is used to optimize the consequent 
parameters by forward pass keeping the 
value of premise parameters fixed. Once the 
optimal consequent parameters are found, 
the backward pass starts immediately to 
optimize the premise parameters using the 
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gradient decent BP-ANN. In the present article, 
a Sugeno-type FIS using subtractive clustering 
is generated using genfis2 function to provide 
an initial set of membership functions for the 
training of ANFIS. Figure 2 shows our training 
algorithm for optimizing ANFIS (Rahmanian et 
al., 2012).

Artificial neural networks
Artificial Neural Networks (ANNs) are aptly 

suited for investigating of ill-understood 
problems with imprecise data which can 
successfully model and predict various 
complex and highly non-linear processes. ANNs 
have been widely applied in many fields such 
as process modeling, control, optimization, 
estimation and forecasting (Haykin, 1999). 
Many neural networks have been constructed 
to perform approximation of multi-dimensional 
function by solving the hyper-surface 
reconstruction problem. This form of learning 
is closely related to classical approximation 
techniques such as regularization theory. The 
solution of multivariate regularization theory 
leads to a class of three-layer networks called 
Regularization networks which is reviewed in 
the following section (Haykin, 1999).

A brief review of Regularization networks
Poggio and Girosi proved that the ultimate 

solution of the ill-posed problem of multivariate 
regularization theory could be represented 
in the concise form of (Poggio et al., 1990; 
Shahsavand, 2000):

( ) ywIG N =+ λλ     (1)

where G is the N×N symmetric Green’s 
matrix which usually is factorizable isotropic 
Gaussian basis function with certain spread , 

λ  the regularization parameter, NI  is the N×N 
identity matrix,

λw is the N×1 linear synaptic 
weight vector and y  is the real response values 
corresponding to input vector Nxi ,.....,2,1= . The 
structure of RN and Gaussian basis function 
parameters are elaborated in Appendix B. Figure 
2 depicts the Flow diagram representation of 
our in-house optimal training algorithm for a 
Regularization network. The performance of 

Figure 1. Block diagram representation of training 
algorithm for optimized ANFIS.

Regularization network strongly depends on 
the appropriate choice of the isotropic spread 
and the proper level of regularization which is 
described in Appendix B. In the following figure, 
e

k
 is the N×1 unit vector in which all elements 

(except the kth one) are zero. 

Simulation case study: GTU of Khangiran (Or 
Hasheminejad) natural gas refinery 

Khangiran is the major gas field in North 
East of Iran, near the Turkmenistan border, and 
it supplies gas to six north eastern provinces 
through Khangiran (Hasheminejad) refinery 
which has been operational since late 1970s 
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Figure 2. Flow diagram representation of our in-
house optimal training algorithm for a Regularization 

network

with around 50 sour gas wells. According 
to recent reports, total gas intake of the 
refinery, whether sour or sweet, amounts to 
57 MMSCMD and by completion of underway 
development projects, the gas sweetening 
capacity of the refinery will increase by 
10 MMSCMD to reach 67 MMSCMD. Sulfur 
production capacity of Khangiran gas refinery 
stands at 2,600 tons a day while the actual 
production is 2,000 tons. At present, it consists 
of five sour gas treating units (GTUs) along with 
four sulfur recovery units with maximum total 
sulfur production capacity. All sweetening units 
were designed using 34wt% DEA in water as the 
solvent (Shahsavand et al. 2010; Moaseri et al., 
2013; Shahsavand et al., 2011). Since 2006, 47 
wt% MDEA solution in water was replaced for 
DEA solution, to decrease amine circulation rate 
and hence save energy in regenerator reboilers 
and provide extra sweetening capacity for sour 
gas treatment. The wet sour gas analysis for the 
contactor feed of the Khangiran GTUs has been 
presented in our previous article (Shahsavand 
et al. 2010).

The acid gas leaving Khangiran refinery’s 
GTU contains about 35% hydrogen sulfide. 
Such low quality SRU feed stream requires split 
flow with pre-heat scheme for 500 tons per 
day production of elemental sulfur by each 
sulfur recovery unit. In the absence of sufficient 
pre-heat, serious operational problems will be 
encountered, such as combustion chamber low 
flame temperature (around 860 0C), unburned 
BTEX components, low quality and impure 
produced elemental sulfur with dark yellowish 
color.

 Low acid gas quality combined with 
the premature catalyst deactivation rapidly 
decreases the overall efficiency of the entire 
Claus process from the standard value of 97% 
to less than 90%.

The entire Khangiran GTU process was 
initially simulated using Aspen HYSYS version 
8.3 simulator (Aspen HYSYS V.8.3 contains 
a special acid gas property package which 
supports various Sulfolane-M solutions.) using 
the actual operating conditions which has been 
described in full detail in our previous article 
(Shahsavand et al. 2010). The simulation was 

initially calibrated by validation with real plant 
data.  The most important operating conditions 
are summarized in Table 1. Figure 3 shows the 
simplified schematic diagram of Khangiran 
gas refinery showing all output parameters of 
artificial neural network (in italic fonts). Both 
ANFIS and in-house RN are used to investigate 
the effects of inputs (sulfolane and MDEA 
weight percent in the lean amine solution) on 
actual operational variables such as benzene, 
toluene and ethylbenzene (BTE) escape factors 
(Defined as: (moles of BTE escaping from 
regenerator to SRU / total BTE moles entering 
GTU)×100), H

2
S mole fraction and total moles 
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of SRU feed, reboiler temperature and mole 
fraction of CO

2
 in sweet gas.

Networks predictions
Figure 4 maps the entire input domain of the 

ANN and illustrates 37 concentration pairs used 
as training exemplars for MDEA and sulfolane 
in the range of (25-47 wt%) and (0-37 wt%), 
respectively.

The training data of appendix C is used to 
train networks including conventional MATLAB 
ANFIS Editor Toolbox and exact fit networks 
(which is equal to RN, but λ=0) along with 
Regularization network and optimized ANFIS. 

After training, the trained network can be used 
for predicting outputs for one or some of the 
training data (recall) or computing outputs for 
some exemplars outside the training set but 
inside the training domain (generalization).   

Figure 5 presents typical recall performances 
of all above four networks for benzene escape 
factor (%) (out of six other recall performances) 
which is significantly appropriate. A person 
unfamiliar with the over-fitting concept may take 
proper recall performance as a reliable basis to 
accept all predictions of such network. Figure 6, 
which shows the corresponding generalization 
performances over 100×100 mesh, clearly 

P Temp.(°C)
Pres.
(psia)

Flow 
(Kgmole/hr)

H
2
S(mol%) CO

2
(mol%)

Sour gas (To contactor) 52 1050 7319 3.57 6.43

Treated Gas 36 1050 6574 0 0.66

Lean Amine (To Contactor) 57 1050 18650 0.03 0.01

Rich Amine (From Contactor) 72 1050 19380 1.35 2.21

Lean Amine (To Flash Drum) 57 90 70 0.03 0.01

Rich Amine (To Regenerator ) 99 90 19445 1.35 2.19

Lean Amine (From Regenerator) 121 27 18670 0.03 0.01

Acid Gas (From Flash Drum) 69 90 28.5 0.04 6.81

Acid Gas (From Regenerator) 55 27 755 33.48 56.05

Table 1: Some operational conditions of Khangiran GTUs.

Figure 3. Simplified schematic diagram of Khangiran gas refinery unit.
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Figure 4. Sulfolane and MDEA input data for training our in-house optimal RN and optimized ANFIS.

Figure 5. Typical recall performances of various ANN and ANFIS for Benzene escape factor.

Figure 6. Typical generalization performances of Benzene escape factor (%) in SRU feed stream versus MDEA and 
sulfolane (wt%) variation in lean amine for various networks. 
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illustrates that such a naive presumption can 
lead to catastrophic results when the trained 
network is used for generalization purposes.

 It should be emphasized that un-regularized 
networks (Exact fit network) tend to follow (fit) 
the noise (or measurement errors associated 
with real data) and lead to severely oscillatory 
generalization performances as shown in Figure 
6. A similar oscillatory trend can be observed 
at MATLAB ANFIS toolbox generalization 
performance. 

The optimum level of regularization 
eliminates the ill-conditioning problem and 
leads to a more reasonable generalization 
performance. It is quite clear that LOOCV 
criterion is relatively successful to stabilize 
the generalization performance. Both 
Regularization network and optimized 
ANFIS provide almost similar generalization 
performance over the entire domain. From now 
on, only the generalization performances of 
these two networks will be presented. 

According to both fully optimized RN and 
optimized ANFIS networks of Figure 6, sulfolane 
and MDEA concentrations of (0,0.25) and (0.37, 
0.47) can be considered as the optimal choices 
based on minimization of  benzene escape 
factor entering SRU, which only permits 20% of 
the total inlet benzene entering GTU passing 
to the SRU feed stream. Evidently, the first 
point (i.e. 0 & 0.25) seems much more attractive 
from both economical and operational view 
points. However, other considerations (as will 

be discussed in the following sections) will 
indicate that the other optimal point will be 
more appropriate for sustainable production. 

Figure 7 depicts the generalization 
performances of toluene escape factor versus 
MDEA and sulfolane (wt%) variation in lean 
amine via Regularization and optimized 
ANFIS networks. As before, the generalization 
performances of both networks are practically 
the same and no distinct difference can 
be distinguished. Both generalization 
performances indicate that at the global 
optimum point of (0.37, 0.47), almost the entire 
toluene content of SRU feed stream has been 
eliminated. Evidently, the other suboptimal 
point of (0, 0.25) will lead to the relatively high 
concentrations of toluene. 

Similarly, Figure 8 shows that the optimal 
point of (0.37, 0.47) provides minimum 
Ethylbenzene escape factor and practically 
removes all Ethylbenzene from GTU feed 
stream. In light of the above results, a mixture 
of 37 wt% sulfolane, 47 wt% MDEA and 16 
wt% H

2
O provides minimum escape factors 

for all BTE components. Small fluctuations 
observed in predictions of optimally tuned 
RN for Ethylbenzene escape factor indicate 
that LOOCV criterion relatively fails to totally 
filter the noise embedded in the training 
exemplars. Other techniques such as modified 
U curve method can lead to more stable hyper-
surfaces.

Figure 9 depicts two similar generalization 

Figure 7.Generalization performances of Toluene escape factor (%) in SRU feed stream versus MDEA and sulfolane 
(wt%) variation in lean amine (Left: RN, Right: ANFIS)
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performances for the total molar flow rates 
(kgmole/hr) entering SRU versus MDEA and 
sulfolane (wt%) variation in lean amine 
solution. Evidently, lower molar flow rates are 
more desirable since they indicate higher levels 
of acid gas enrichments due to efficient CO

2
 

rejection. Both Figures indicate that as before, 
the optimal point of (0.37, 0.47) provides 

minimum molar flow rate of 415 kgmole/hr for 
the SRU feed stream. About 43% drop in the total 
molar flow rate of SRU inlet stream (compared 
to 725 kgmole/hr  at (0 & 0.47)) will dramatically 
reduce the size of a conventional Claus unit in 
the design stage or significantly increase the 
plant throughput at an existing SRU facility. 

Figure 10 illustrates two similar generalization 

Figure 8.Generalization performances of Ethylbenzene escape factor (%) in SRU feed stream versus MDEA and 
sulfolane (wt%) variation in lean amine (Left: RN, Right: ANFIS)

Figure 9. Generalization performances of SRU feed stream molar flow (kgmole/hr) versus MDEA and sulfolane (wt%) 
variation in lean amine (Left: RN, Right: ANFIS)

performances for hydrogen sulfide mole 
fractions of SRU feed streams versus MDEA 
and sulfolane concentrations in lean amine 
solutions. Figure 10 clearly shows that the H

2
S 

mole percent in SRU feed stream increases 
more rapidly when sulfolane wt% increases. 
In an original GTU with no AGE (which uses a 
solvent containing 47 wt% MDEA and 52 wt% 
H

2
O), the SRU feed stream contains around 34 

mole% H
2
S while, by using a solvent containing 

37 wt% sulfolane, 47 wt% MDEA and 16% H
2
O, 

the H
2
S content of acid gas stream entering 

SRU will raise to more than 57mole% which 
indicates around 62% H

2
S enrichment. It is 

anticipated that such a high amount of H
2
S 

mole fraction in SRU inlet stream, which is due 
to large slippage (rejection) of CO

2
 and other 

impurities such as BTE, can severely increase the 
furnace temperature of Claus unit and alleviate 
the catalytic deactivation while increasing the 
sulfur recovery efficiency. 

Two 3D plots shown in top of Figure 11 
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depict the generalization performances of the 
optimally regularized and optimized ANFIS 
networks for reboiler temperature of GTU 
regenerator column versus MDEA and sulfolane 
concentrations. Severe oscillations are still 
revealed in the generalization performance of 
the regularization network. Evidently, LOOCV 
criterion fails to provide the optimal level of 
regularization parameter for the regularization 
network. Hence, it cannot successfully filter out 
the noise and extract the true underlying trend 
embedded in the noisy data set. Our previous 
work (Niknam Shahrak et al., 2013) summarized 
various techniques (such as visual, L-curve, 
modified L-curve, U-curve and modified 
U-curve methods) for automatic selection of 
the optimum ridge regression or regularization 
parameter. 

In the absence of a reliable method 
for successful estimation of the optimal 
regularization level, the computed values for 
the optimal spreads has no practical meaning 
and both the optimal values of the isotropic 
spread and the regularization level should be 
recomputed using one of the above techniques. 
The bottom-left 3D plot of Figure 11 clearly 
shows that visual optimization of regularization 
level dramatically fails when improper value is 
selected for the Gaussian isotropic spread (note 
the value of vertical axis).  On the other hand, 
the bottom-right 3D plot of Figure 13 illustrates 
that visual optimization of regularization level 
successfully captures the true underlying trend 

embedded in the training data when proper 
value of (σ=1.0) is selected for the Gaussian 
isotropic spread.

It is proved that maximum recommended 
skin temperature (tube wall temperature) for 
MDEA is 178 ̊ C (350 F) and the temperature when 
MDEA degradation starts is advised as 182 ˚C 
(360 ˚F) (Reza et al., 2006; Chakma et al., 1997). 
However, lots of parameters can affect the 
degradation process and must be taken into 
account. Amine solutions are prematurely 
degraded by reaction with CO

2
, oxygen, organic 

sulfur compounds, and other gas impurities to 
form heat-stable salts and amine degradation 
products. Most scientific literature agree that 
MDEA thermal degradation temperature starts 
at 127˚C (260 ˚F) in the presence of H

2
S and CO

2
. 

In other words, to achieve a reliable and steady 
operating system, it is recommended that the 
maximum amine temperature should be kept 
below127 ˚C (260 ˚F). 

Both right 3D plots of Figures 11 indicate that 
the reboiler temperature essentially remains 
independent of MDEA concentration, especially 
for extremely low sulfolane concentrations. The 
previously found optimal solution containing 
37 wt% sulfolane and 47 wt% MDEA still leads 
to rebolier temperature of around 129 ˚C which 
can cause excessive degradation of MDEA. To 
ensure more sustainable operation, the sulfinol 
solution of 37 wt% sulfolane and 45 wt% MDEA 
may be recommended.

Figure 10.Generalization performances of hydrogen sulfide mole fraction in SRU inlet feed stream versus MDEA and 
sulfolane (wt%) variation in lean amine (Left: RN, Right: ANFIS)
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Figure 11.Generalization performances of reboiler temperature (0C) of regenerator column versus MDEA and 
sulfolane (wt%) variation in lean amine. 

Figure 12 .Generalization performances of carbon dioxide mole fraction in sweet gas stream (mole%) versus MDEA 
and sulfolane (wt%)variation in lean amine (Left: RN, Right: ANFIS)

Figure 12 shows two nearly equal 
generalization performances of both networks 
for carbon dioxide mole fraction in sweet 
gas stream (mole%) leaving the contactor. 
Conventionally, the carbon dioxide content of 
the sweet gas entering the trunk line should 
be around 2-5 mole percent (Mokhatab et al., 
2012; Kidnay et al., 2006). As it is anticipated, 
high concentrations of sulfolane will reject 
the carbon dioxide from acid gas stream 
and increase the mole fraction of CO

2
 inside 

the sweetened gas stream. Therefore, the 

previously determined optimal concentrations 
of 37 wt% sulfolane and 45 wt% MDEA can lead 
to excessive CO

2
 rejection rate. Fortunately, 

Figure 12 shows that the CO
2
 mole fraction of 

the contactor overhead is around 4.5 mole% 
which is still well within the permissible range. 
Table 2 summarizes all simulation results 
including various escape factors and different 
constituents molar flow and compositions for 
several locations of the GTU process operating 
with optimal concentration of Sulfinol-M 
solution (37 wt% Sulfolane, 45 wt% MDEA).
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ـــــــــــــــــــــــــ
Conclusion

Contaminants in the acid gas stream can 
seriously impact the operability and reliability 
of a sulfur plant. Therefore, designers must 
determine the most economical means of 
removing or destroying these contaminants 
so that they do not negatively affect the 
performance of the facility. Selective removal 
of H

2
S in the presence of CO

2
 and other 

impurities provides better-quality Claus process 
feed stream for attaining proper sulfur recovery 
efficiency. 

Various mixtures of sulfolane and MDEA 
solutions (Sulfinol solvent) were used to simulate 
the conventional GTU process of Khangiran 
natural gas refinery via Aspen-HYSYS V.8.3 and 
their performances for the H

2
S enrichment 

efficiency were evaluated. Optimized ANFIS 
network and its recall and generalization 
performances were compared with our 
previously developed in-house Regularization 
network and two other networks borrowed 
from conventional MATLAB neural network 
toolbox (ANFIS Editor and exact fit networks). 
It was clearly shown that two fully optimized 
ANFIS and RN networks provided more reliable 
interpolation hyper-surfaces for ten outputs in 
order to find optimal sulfolane concentration in 
the sulfinol-M solvent.

The outstanding generalization performance 
of the RN network is the result of its strong 
theoretical backbone due to the powerful 
multivariate regularization theory coupled 
with the efficient technique of leave one out 
cross validation (CV) criterion. Also, strong 
noise filtering capabilities of ANFIS network via 
minimization of error provide a distinguished 
performance. The optimal concentrations 
of 37 wt% sulfolane and 45 wt% MDEA were 
selected for the GTU process of Khangiran 
refinery which can successfully eliminate the 
entire toluene and ethylbenzene from the SRU 
feed stream while removing 80% of benzene 
entering the GTU process. The mole fraction of 
H

2
S in the SRU feed stream also increased from 

33.48 mole% to over 57mole% when using the 
optimal Sulfinol-M aqueous solution. 
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Appendix A

A schematic structure of an ANFIS network 
which has five distinct layers is shown in Fig. 
1.A. For simplicity, it is presumed that the fuzzy 
inference system has two inputs (x, y) and 
just one output (f). The following rules can be 
written for a first order Sugeno fuzzy model:

Rule 1: If x is A
1
 and y is B

1
, then f

1
 = p

1
 x + q

1
 y + r

1

Rule 2: If x is A
2
 and y is B

2
, then f

2
 = p

2
 x + q

2
 y + r

2

In the above rules: p
1
, q

1
, r

1
 and p

2
, q

2
, r

2
 are 

the consequent parameters. Also A
1
, B

1
, A

2
, and 

B
2
 are the linguistic labels. As shown in figure 1, 

fuzzy inference system consists of five distinct 
layers which are described below:

Layer 1 (or Fuzzification layer): 
The fuzzy part of ANFIS is mathematically 

incorporated in the form of membership 
functions (MFs) to divide dimensions of each 
input. In most practical applications, Gaussian 
function presented in equation 1, because of 
minimum training and testing errors compared 
to the other shapes, was chosen as the best 
membership function (μ

Ai
(x)): 

                     (1.A)

Where a
i
, b

i
 and c

i
 are a constant (referred 

to premise parameters) that define the bell-
shaped of membership function. Every node 
i in this layer is an adaptive node with a node 
function: 

O
1,i 

= μ
Ai

(x)     for i = 1, 2                    or   

O
1,i

 = μ
Bi−2

(x)  for i = 3, 4                                   (2.A)

Generally, X (or y) is the input variable 
of node i and A

i
 (or B

i−2
) is a linguistic label 

associated with this node. Therefore, O
1,i 

is the 
membership grade of a fuzzy set (A

1
,A

2
,B

1
,B

2
).

Layer 2 (Rule layer):
Every node in this layer is a fixed node 

labeled as π and the output of nodes in this 
layer is the product of all the incoming signals:

O
2,i 

= w
i
 = μ

Ai
(x) · μ

Bi
(y)        i = 1, 2                  (3.A)

Every node in this layer computes the 
multiplication of the input values and gives the 
product as the output. The membership values 
represented by μ

Ai
(x) and μ

Bi
(y) are multiplied in 

order to find the firing strength of a rule where 
the variables x and y have the linguistic values 
A

i
 and B

i
, respectively.

 
Layer 3 (Normalization Layer):
 Each node in this layer normalized the related 
firing strengths (w

i
). The ratio of firing strength 

of each rule to the sum of all rules firing strength 
is calculated according to the following 
equation:

21
,3 ww

wwO i
ii +
==    i=1,2                          (4.A)

where O
3i
 is the output of layer 3 and iw  is 

the normalized firing strength.

Layer 4 (Defuzzification Layer):
 Every node in this layer is an adaptive node with 
a node function, indicating the contribution of 
each rule towards the overall output.

)(,4 iiiiiii ryqxpwfwO ++==   i=1, 2      (5.A)

Layer 5 (Output Layer):
The single node in this layer is a fixed node 

labeled sum, which computes the overall output 
as the summation of all incoming signals:

∑
∑∑ ===

i i

i ii
ii ii w

fw
fwO ,5output  Overall  i=1,2           (6.A)
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Appendix B

Generally, Regularization refers to a process 
of introducing additional information in order 
to solve an ill-posed problem or to prevent 
over-fitting phenomena. This information is 
usually of the form of a penalty for complexity, 
such as restrictions for smoothness or bounds 
on the vector space norm. Many regularization 
techniques correspond to imposing certain 
prior distributions on model parameters.

Poggio and Girosi showed that regularization 
principles lead to approximation schemes 
which are equivalent to networks with one 
hidden layer which are called Regularization 
Networks (RN). In particular, they have 
described that a certain class of radial stabilizer 
(associated priors in the equivalent Bayesian 
formulation) lead to subclass of Regularization 
Network which is already known as a Radial 
Basis Function (Shahsavand et al., 2007).

Figure 1.B illustrates the equivalent network 
(known as the Regularization network (RN)) for 
the above equation with N being the number 
of both training exemplars and neurons of RN. 
These neurons (or centers) should be positioned 
exactly at the locations of training exemplars. 

For a special choice of stabilizing operator, 
the Green’s function reduces to the following 
multidimensional factorizable isotropic 
Gaussian basis function with infinite number 

of continuous derivatives (Shahsavand et al., 
2005).

                    

                                                         (1.B)

In the above equation, σ
j
 denotes the 

isotropic spread of the jth Green’s function and is 
assumed to be identical for all input dimensions. 
The network consists of a single hidden layer 
with N neurons and the activation function 
of the jth hidden neuron is a Green’s function 

),( jxxG  centered at a particular data point jx
. The influence of the regularization parameter 
λ is embedded in the unknown synaptic 
weights w

j
s. The performance of Regularization 

network strongly depends on the appropriate 
choice of the isotropic spread and the proper 
level of regularization. Small values of λ  lead to 
oscillatory solutions due to fitting of the noise, 
while excessively large levels of regularization 
parameter will over-smooth the Regularization 
network predictions (Shahsavand et al., 2007). 
The leave one out cross validation technique 
(LOOCV) is frequently used for automatic 
selection of optimal ridge regression level. 
A detailed comparison of LOOCV with other 
techniques such as Generalized cross validation 
(GCV), L-curve, modified L-curve, U curve and 
modified U-curve method have been presented 

Figure 1.A  ANFIS structure for a two-input Takagi-Sugeno model 
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Figure 1.B. Schematic representation of Regularization network with single hidden layer

in our recent article (Niknam Shahrak et al., 
2013). The optimal value of ridge regression 
parameter is case dependent and as before, 
the LOOCV criterion (among many others) 
can be used to provide the best value of l for 

the problem at hand. Our fully optimized in-
house training algorithm for the isotropic 
Regularization network has been discussed in 
sufficient detail elsewhere (Shahsavand et al., 
2009).

MDEA
Conc.

Sulfolane
Conc.

Benzene
 Escape
Factor

Toluene
Escape
Factor

Ethylbenzene
Escape
Factor

SRU
  Molar

Flow

H
2
S mole% in 
SRU feed

Reboiler
Temp.

CO
2
 mole%

 in sweet gas

wt% wt% % % %
kgmole/

hr
mol% 0C mol%

0.47 0 59.5 98.8 100 729 0.35 120.9 0.009
0.47 0.1 89.5 99.9 100 687.5 0.36 121.9 0.0157
0.47 0.2 99.9 50.9 29.2 591.1 0.42 123.6 0.0292
0.47 0.3 54.1 26.8 13.4 481.8 0.52 126.7 0.0437
0.47 0.32 48.0 23.3 11.3 464.9 0.54 127.7 0.044
0.47 0.37 39.3 3.3 6.7 413.2 0.57 128.3 0.045
0.44 0 52.3 93.8 98.9 730.7 0.35 120.7 0.0093
0.44 0.1 77.7 99.9 100 697 0.36 121.6 0.0142
0.44 0.2 99.8 94.0 38.7 616.5 0.41 122.9 0.0257
0.44 0.3 64.6 32.8 17.2 507.1 0.50 125.4 0.0405
0.44 0.32 57.4 28.9 14.7 489.2 0.51 126.2 0.0429
0.4 0 44.1 82.5 88.6 730.7 0.35 120.3 0.0091
0.4 0.1 64.7 99.7 100 704.6 0.36 121.1 0.0129
0.4 0.2 96.0 99.5 81.1 640.1 0.39 122.2 0.0223
0.4 0.3 99.9 41.9 23.7 541.9 0.46 124.1 0.036
0.4 0.35 60.5 31.1 16.1 493.6 0.51 125.7 0.0424
0.35 0 35.8 68.4 70.7 728.2 0.35 120 0.0092
0.35 0.1 51.9 94.2 99.1 704.8 0.36 120.7 0.0124
0.35 0.2 77.7 99.8 98.9 654.2 0.38 121.6 0.0199
0.35 0.25 94.6 97.4 51.3 617.4 0.41 122.2 0.0253
0.35 0.3 99.8 60.5 33.8 574.8 0.44 123 0.0314
0.35 0.35 99.9 42.1 23.8 529 0.48 124 0.0377
0.35 0.38 88.7 35.5 19.0 503.5 0.50 124.9 0.0412
0.3 0 29.1 56.1 55.1 716.6 0.35 119.8 0.0101
0.3 0.1 41.7 80.0 86.4 693.1 0.36 120.3 0.0133
0.3 0.2 61.8 99.4 99.9 651.8 0.39 121.1 0.0196
0.3 0.3 93.6 83.8 46.0 589.3 0.43 122.1 0.0289
0.3 0.35 99.7 55.1 33.6 549.8 0.46 122.9 0.0345
0.3 0.38 99.9 46.7 27.5 528.2 0.48 123.5 0.0376

0.25 0 23.5 45.0 41.9 678.8 0.37 119.5 0.014
0.25 0.1 33.5 65.1 68.0 657.6 0.38 119.9 0.0174
0.25 0.2 49.4 91.9 98.4 626.2 0.40 120.6 0.0223
0.25 0.25 60.5 99.1 99.7 603 0.42 121.1 0.0259
0.25 0.3 75.1 95.5 60.5 579.7 0.43 121.5 0.0294
0.25 0.35 92.7 68.6 45.0 551.8 0.46 122.1 0.0336
0.25 0.38 98.7 58.7 37.6 533.2 0.47 122.5 0.0363

ــــــــــــــــــــــــــ
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Abstract

This investigation attempts to evaluate and compare the effect of packing type on the mass 
transfer and pressure drop along the gas sweetening absorption column. To this aim, modern 
packings such as Super Ring, Ralu Ring, Ralu Flow and the second-generation packing (Pall Ring), have 
been used in simulated columns by using of Aspen HYSYS modeling software. Flooding calculation 
is made possible by linking Aspen HYSYS with MATLAB programing. The selected models validity is 
checked by comparison to empirical data from a real gas plant. It should be noted that empirical data 
is available just for second-generation packing. Comparison of these packings performance shows 
that Super Rings provide low pressure drop, Ralu Rings lead to high mass transfer and Ralu Flow 
packings can provide high mass transfer and low pressure drop in absorption columns. According 
to results, the capacity of gas treatment units can be significantly increased by replacing Pall Ring 

with Ralu Flow.

Keywords: Natural gas sweetening, absorption column, packing, mass transfer, pressure drop
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ـــــــــــــــــــــــــــــ

Introduction 

Nowadays, one of the most common 
methods to increase the capacity of a plant for 
gas purification is absorption column internal 
modification which is usually realized through 
replacement of packed beds. Development of 
packings initiated in 1950 when the second-
generation Pall Ring and Intalox packings were 
designed and later continued by creating the 
third-generation International Metal Tower 
Packing (IMTP) and Cascade Mini-Ring (CMR). 
Due to packing key role in absorption and 
desorption processes, packings developed 
in recent years have been widely employed. 
Super Rings, Ralu Rings and Ralu Flows are 
the fourth-generation packings which have 
prominent characteristics compared to the 
other types.  Billet and Schultes (1999) made an 
effort to predict the mass transfer in columns 
with dumped and arranged packings. Schultes 
(2003) investigated the characteristics of some 
third-generation packings including Nutter 
Ring, CMR, IMTP and also Super Ring as a 
fourth-generation packing. Darakchiev et al. 
(2005) compared the gas distribution in packed 
columns with IMTP and Ralu Flow packings. 
Nako et al. (2007) compared the effective areas 
of some highly effective packing. Darakchiev 
and Semko (2008) investigated the effect of 
modern high effective packings on water-
ethanol rectification. Mackowiak (2009) 
predicted the pressure drop of some packings 
by extended channel model.

 Arachchige et al. (2012) compared the effect 
of second-generation packings on energy 
consumption of CO

2
 capture processes by 

using of Aspen Plus. As previous studies have 
been based on predicting the characteristics 
of packings and assessing the performance 
of second and third generation packings, 
this paper investigates the effect of replacing 
fourth generation random packings on energy 
consumption and capacity of gas purification 
plants (MDEA-based). To this aim, Aspen HYSYS 
simulation software (V8.3) is used for modeling 
of packed column. 

ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

Rate-based modeling and validation

In this paper, a real life case study data 
(BIDBOLAND gas refinery, Iran) has been used 
for validation of simulation results. The entire 
refinery has four parallel gas treatment units 
(GTU) with 4 absorbers and 4 regenerators. 
The absorbers have an internal diameter of 2.9 
meters and two sections. Each section is 6.54 
meters in height and filled with plastic random 
packing (2-inch Pall rings). The regenerator 
column has 17 sieve trays and internal diameter 
of 3.96 meters. Based on tray spacing of 27 inch, 
the height of the column is 11.66 m. Table 1 
shows the current operation conditions of the 
mentioned units.

The traditional approach of modeling 
absorption and Regenerator columns is using 
the equilibrium stages. In this model the column 
is divided into a number of stages and it assumes 
that the vapor and liquid phase leaving a stage are 
at equilibrium. This assumption is used to simplify 
the modeling and rarely happens in reality.

The departure from equilibrium is corrected 
by applying tray efficiency like the Murphree 
efficiency for tray columns or the height 
equivalent to a theoretical plate (HETP) for 
packed columns. For reactive separation 
processes, the deviations from the equilibrium 
model are very large and the use of efficiencies 
does not work well. Hence, rate-based models 
are suggested for modeling these systems. 
This model assumes that the vapour-liquid 
equilibrium occurs only at interface. In this work, 
the RadFrac distillation model was used to model 
the absorber and stripper columns. It is a rigorous 
model for simulating absorption and stripping 
where chemical reactions are occurring. The 
rate-based mode of RadFrac, called ASPEN 
RateSep, allows for the rate-based modeling of 
absorption and desorption columns and uses 
the two-film theory in mass and heat transfer 
models. According to the above-mentioned, 
the validity of the simulation results depends 
heavily on selection of equilibrium and mass 
transfer models used in simulation. In this study, 
the ACID GAS thermodynamic package and 
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Absorption Column

2-inch, Pall ring

2

Type of packing

Number of section

54Column Pressure, bar

1950H
2
S in Gas Feed, ppm

1.74%CO
2
 in Gas Feed, mole

30.0Gas Feed Temperature, ºC

40%Amine Conc. in Solvent, wt

34Inlet lean Amine Temperature, ºC

4615Amine Flow Rate, kmol.h-1

15860Feed Gas Flow Rate, kmol.h-1

Table 1. Current operation conditions of BIDBOLAND gas refinery units

Table 1. Current operation conditions of BIDBOLAND gas refinery units (cont’d)

Regenerator Column

1.4Column Pressure, bar

33.0Condenser Temperature, ºC

93.60Feed Temperature, ºC

116.70Bottom Temperature, ºC

ELECNRTL package (PMDEA Data package) are 
selected for process simulation in Aspen HYSYS 
(V 8.3) and Aspen Plus (V 8.2), respectively. It 
should be noted that both of these packages 
use electrolyte NRTL models in the property 
package for the thermodynamics, and also use 
a mass-and-heat transfer rate-based calculation 
method. Aspen Rate-Based distilation uses 
well known and accepted correlations to 
calculate binary mass transfer coefficients for 
the vapour and liquid phases, interfacial areas, 

heat transfer coefficients and liquid holdup. 
The simulation results and operating data of 
the BIDBOLAND treatment unit are provided in 
Table 2. As seen in Table 2, ACID GAS Package 
which has been inserted in Aspen HYSYS (V 8.3) 
software simulated the treatment unit with an 
acceptable accuracy and this simulator is used 
for the following investigation steps. It should 
be mentioned that selected mass transfer and 
interfacial models that provide best results are 
shown in Table 3.
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Table 2. Simulation results of BIDBOLAND GTU using ELECNRTL and ACID GAS packages

Table 3. Mass transfer and interfacial models (ACID GAS and ELECNRTL)

*moles of acid gases per mole of amine

ـــــــــــــــــــــــــــــــــــــــــــــــــــ

Results and discussion

Replacing the Fourth-Generation Packings

In this study, the method of Billet and 
Schultes (1999) has been used for calculating 
flooding percentage. This calculation has been 
done by written MATLAB Code that linked to 
Aspen HYSYS. Table 4 shows the characteristics 
of used packings as well as required constants 
for calculation of flooding percentage. It should 
be noted that attempts have been made to 
avoid using metal packings due to occurrence 
of corrosion in amine sweetening units. The 

ELECNRTLACID GASPlant DataParameters

3.124.024.00H
2
S in Sweet Gas, ppm

1.48930.98341.1065% CO
2
 in Sweet Gas, mole

20.6720.8121.20Rich Amine Temperature, ºC

0.2940.3270.328(Acid Gas Loading*(Rich amine

108˟1.05108˟1.08108˟1.19Reboiler Duty, kJ.hr-1

Regenerator columnAbsorbtion column

Models
Sieve trayBubble capSection 2Section 1

Chen & ChuangGersterHanleyondaMass transfer

ZuiderwegScheffeHanleyondaInterfacial

simulation results are shown in Figs.1, 2, 3 and 
4 in order to study the effect of used packings 
on sweetening and energy consumption of gas 
treatment units of BIDBOLAND refinery.

Amine circulation rate

Figure 1 shows the required amine circulation 
rate in presence of various packings for 
achieving 4ppm H

2
S in sweet gas stream. As it 

is observed, the required amine circulation rate 
in presence of Pall Ring (4615 kmol.h-1) is not 
much different from that in presence of Super 
Ring (4810 kmol.h-1), while amine consumption 
rate significantly decreases in presence of Ralu 
Ring (25mm) and Ralu Flow (NO-1).
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Table 4. Constants and characteristics of used packings (Billet and Schultes, 1999)

C
fl

C
h

Void FractionSpecific Area(m2/m3)Packing Type(size)

1.7570.5930.920110Pall Ring(50mm)

2.0960.7200.960100Super-Ring(NO-2)

1.9890.7190.940190Ralu Ring(25mm)

1.8120.6400.930150Ralu Ring(38mm)

2.4010.6400.940165Ralu Flow(NO-1)

2.1740.6400.945100Ralu Flow(NO-2)

Figure 1. Required amine circulation rate in presence 
of various packings (4 ppm H2S in sweet gas stream)

Figure 2. Unit energy consumption in presence of 
various packings

 (4 ppm H2S in sweet gas stream)

ـــــــــــــــــــــــــــــــــــــــــــــــ

Energy consumption

 Energy consumption of the unit in presence 
of various packings is presented in Figure 2. 
According to Figure 1, as in presence of Ralu 
Ring (25mm) and Ralu Flow (NO-1), the amine 
circulation rate is at lowest level; using these 
two packing types leads to maximum reduction 
in energy consumption of unit.

Operational constrains

Although the main purpose of this paper 

is using appropriate packing to reduce 
sweetening unit energy consumption, 
investigating operating considerations and 
avoiding flooding phenomenon are among the 
most important aspects of this research. Figure 
3 shows the calculated flooding percentage 
in absorption column of gas sweetening unit 
in presence of different packings. As seen in 
this diagram, using Ralu Ring packing (25mm) 
increases the risk of flooding in the column 
whereas there is no such drawback by selecting 
Ralu Flow (NO-1).

Another important factor in selecting the 
type of packing is acid gas loading in rich 
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Figure 3. Predicted flooding percentage in presence 
of various packings (4 ppm H2S in sweet gas stream)

Figure 4. Acid gas loading in rich amine in presence of 
various packings (4 ppm H2S in sweet gas stream)

amine solution. According to Figure 4, if Ralu 
Flow packing is used to achieve 4ppm hydrogen 
sulfide in sweet gas stream, acid gas loading in 
rich amine will increase more than critical limit 
(0.5 mole/mole for MDEA) (Kohl and Nielsen, 
1997). At the same time, as shown in Table 5, 
when concentration of 2 ppm is achieved for 
hydrogen sulfide, acid gas loading in rich amine 
will reach the allowed limit while the unit energy 
consumption will be lower than that using other 
types of packings in similar conditions.

Increasing capacity

In this study, according to the performance 
of sweetening unit of BIDBOLAND refinery, 
flooding critical limit in absorption column is 
considered to be 65%.

According to this parameter and the results 
presented in Table 6, the refinery capacity can 
be increased up to 18% by replacing Pall Ring 
with Ralu Flow.

Total Energy

(kj/hr)

Flooding

(%)
Rich Loading

CO
2
 in sweet 

gas (mole %)

Amine Flow

(kmol.h-1)
Packing Type

10083673251.150.5301.08922894 Ralu Flow (4 ppm)

12380748553.080.4791.03973413Ralu Flow (2 ppm)

Table 5. Comparison of unit performance in presence of Ralu flow packing to achieve 2 and 4 ppm H2S in sweet 
gas stream (Sour gas flow: 9 MMSCMD)

Table 6. Comparison of unit performance in presence of Ralu flow packing to achieve 9 and 11 MMSCMD capacity 
(H2S concentration in sweet gas: 2 ppm)

Total Energy

(kj/hr)

Flooding

(%)
Rich Loading

CO
2
 in sweet 

gas (mole %)

Amine Flow

(kmol.h-1)

Sour Gas Flow

(MMSCMD)

12380748553.080.4791.039734139.00

14218839162.410.4671.11735394011.00
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ـــــــــــــــــــــــــ

Conclusion

Analysis of simulation results of gas treatment 
unit of BIDBOLAND refinery shows that 
changing the type of packing in the absorption 
column can decrease not only flooding risk, but 
also energy consumption.

Comparing the performance of modern 
random packings of Super Ring, Ralu Ring, and 
Ralu Flow indicates the reduction of flooding 
risk in the absorption column in the presence 
of Super Ring packing.

The results reveal that using Super Ring 
packing will not make any change to the level of 
absorption of acid gases, energy consumption 
and the unit capacity compared to Pall ring 
packing.

At the same time, using Ralu Flow packings 
(NO-1) largely increases hydrogen sulfide 
absorption. Although this issue reduces the 
amine circulation rate, it raises the level of acid 
gases loading in rich amine solution over the 
allowed limit.

To solve this problem, amine circulation rate 
is increased which in turn reduces acid gases 
loading and increases sweet gas purity.

 As seen in the results, using Ralu Flow 
packing (NO-1) in the absorption column 
decreases flooding and allows for increasing 
the unit capacity up to 1.18 times of the current 
capacity.

 It should be noted that like Ralu Flow packing, 
using Ralu Ring packing (25mm) will decrease 
the unit energy consumption. However, due 
to its failure in decreasing flooding, it cannot 
increase the unit capacity.

ـــــــــــــــــــــــــــــــــــــــــ
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ارائه مدل تصحیح شده چهار ضریبی برای مشخصه سازی جزء سنگین در یک 
مخزن فوق عظیم گاز میعانی

شهریار•عصفوری•-•دانشگاه•خلیج•فارس،•دانشکده•مهندسی•نفت،•گاز•و•پتروشیمی،•گروه•مهندسی•شیمی،•بوشهر،•ایران••

رضا•آذین•-•دانشگاه•خلیج•فارس،•دانشکده•مهندسی•نفت،•گاز•و•پتروشیمی،•گروه•مهندسی•شیمی،•بوشهر،•ایران••

امین•محمدرضایی•-•دانشگاه•خلیج•فارس،•دانشکده•مهندسی•نفت،•گاز•و•پتروشیمی،•گروه•مهندسی•شیمی،•بوشهر،•ایران••

ـــــــــــــــــــــــ

چکیــــده

خواص و ترکیب برش جمعی یک سیال نفتی تأثیر قابل توجهی بر رفتار فازی سیال دارد. شناخت روند تغییرات جرم مولکولی گروه های 
متوالی تک کربن برش جمعی مستلزم داشتن یک تابع توزیع دقیق و قابل اعتماد است. مدل های مختلف تابع توزیع موجود برای انواع 
خاص سیال قابل استفاده است. در این مقاله، تحلیل 30 سیال معرف یک مخزن گاز میعانی فوق عظیم نشان داد که ناپیوستگی در جرم 
مولکولی های گروه های تک کربن 8 و 13 است. توابع توزیع نمایی، گاما، چهارضریبی و چهارضریبی تصحیح شده بر این داده ها اعمال شد 
تا ترکیب گروه های تک کربن پیش بینی شود. نتایج نشان داد که تابع توزیع نمایی دقت لازم برای پیش بینی توزیع ترکیبات تک کربن به 
ویژه در نقاط ناپیوستگی ترکیب را ندارد. به علاوه، تابع توزیع گاما ناپیوستگی ترکیب در عدد کربنی 8  را به خوبی پیش بینی کرد ولی دقت 
لازم در عدد کربنی 13 را ندارد. خطای کلی محاسبات برای روش های نمایی، گاما و چهارضریبی تصحیح شده به ترتیب برابر با %37.9، 
12.04% و 10.71% بدست آمد. مقایسه نتایج پیش بینی مدل چهارضریبی و مدل چهارضریبی تصحیح شده نشان داد که متغیرهای مدل 

به شدت وابسته به ماهیت سیال است و بر اساس داده های میدانی موجود نیازمند بهینه سازی میباشد.

واژگان کلیدی: گاز میعانی، برش جمعی، تابع توزیع، مدل چهارضریبی



76  Journal of Gas Technology . JGT 

ساخت و ارزیابي غشاهاي آمیزه پلیمري برای جداسازي 
 CO2/CH4

سمیرا•مصلح•)دپارتمان•مهندسی•شیمی،•دانشگاه•کاشان(••

محمدرضا•مزدیانفرد•)دپارتمان•مهندسی•شیمی،•دانشگاه•کاشان(••

محمود•همتی•)پژوهشگاه•صنعت•نفت(••

قادر•خان•بابائی•)پژوهشگاه•صنعت•نفت(••

ـــــــــــــــــــــــ

چکیــــده

اتصال عرضی،  ایجاد  آمیخته،  ماتریس  عملکرد غشا شامل غشاهای  بهبود  برای  مختلف  اصلاحی  تکنیک های  دهه گذشته،  دو  در 
پیوندسازی، آمیزه سازی پلیمری، ساخت غشاهای کامپوزیتی یا ترکیبی بکارگرفته شده است. استفاده از آمیزه سازی غشاهای پلیمری، 
رویکردی کم هزینه و سریع و در عین حال، تکنیکی پیشرفته برای جداسازی گاز است که در آن، دو یا چند پلیمر برای تولید ماده ای 
جدید با خواص متفاوت فیزیکی، شیمیایی و مکانیکی بکاربرده می شوند. در این مقاله، عملکرد جداسازی غشا آمیزه پلیمری جدیدی، بر 
پایه پلی )آمید-B اکسید اتیلن( و پلی اترسولفون گزارش می شود. این غشاهای تخت با استفاده از روش قالب گیری محلول در نسبت های 
CO تهیه شدند. ویژه گی های غشاهای ساخته شده 

2
/CH

4
مختلف )%40-10( به منظور بهبود عملکرد جداسازی غشایی مخلوط گازهای 

سپس توسط آنالیز طیف سنجی تبدیل فوریه مادون قرمز )FTIR( ارزیابی شدند، بطوری که تغییرات طیفی در آن حاکی از تعامل متقابل 
CO( نیز در دمای اتاق 

2
CH و 

4
مولکولی داشت و سازگاری طبیعت میان پلیمرها در این آمیزه را تایید می کرد. نفوذپذیری گازهای خالص )

 CO
2
/CH

4
مورد بررسی قرار گرفت. نتایج نشان داد که افزایش درصد وزنی PES در غشا آمیزه Pebax®/PES  سبب افزایش گزینشگری 

و کاهش نفوذپذیری گازهای خالص گردید.

واژگان کلیدی: آمیزه سازی، جداسازی گازی، پلی )آمید-b-اتیلن اکساید(، پلی اترسولفون
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مقایسه و آنالیز عملکرد بهینه سازی معادلات Pressure-Flow در شبکه خطوط 
انتقال و توزیع گاز به دو روش الگوریتم ژنتیک و الگوریتم اردحام

رضا•مسیبی•بهبهانی•)دپارتمان•مهندسی•گاز،•دانشگاه•صنعت•نفت،•اهواز،•ایران(••

ناصر•حاجی•علی•اکبری••

ـــــــــــــــــــــــ

چکیــــده

 یکی از مهمترین اهداف مهندسی گاز، توزیع بهینه گاز در شبکه های انتقال و توزیع گاز است. هرچند که اغلب این فرایند از مسائل 
غیر قابل اجتنابی مانند وجود خطا در تخمین نادقیق فشار در نقاط مختلف شبکه رنج می برد. اخیرا روشهای بهینه سازی آماری برای حل 
این مشکل پیشنهاد شده است. روش های ازدحام ذرات و الگوریتم ژنتیک روشهای مرسوم بهینه سازی برای این هدف هستند. هدف از این 
مطالعه مقایسه عملکرد این دو روش در یک مثال واقعی از شبکه ایران است و با انجام آزمایش 99.99 درصد دقت بدست آمد. در شرایط 
اعمال محدودیت و بار محاسبات یکسان بر دو روش، عملکرد روش ازدحام ذرات سریعتر و دقیقتر از الگوریتم ژنتیک مشاهده گردید. هر 

چند که تکرارپذیری روش الگوریتم ژنتیک بهتر از روش ازدحام ذرات بود. 

واژگان کلیدی: شبکه انتقال گاز، بهینه سازی، الگوریتم ژنتیک
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ارزیابی مقدماتی توان هیدروکربن زایی سازند هجدک در ناودیس زغالی 
کرمان، ایران: رویکرد ژئوشیمیایی

علی•امیری•)دانشگاه•آزاد•اسلامی،•واحد•زرند•کرمان،•ایران(••

منصور•دفتریان•)انجمن•گاز•ایران،•تهران،•ایران(••

ـــــــــــــــــــــــ

چکیــــده

به منظور براورد توان هیدروکربن زایی لایه های زغالسنگ )افق های D و E( و سنگ دربردارنده آن ها در سازند هجدک )ژوراسیک 
میانی- پایانی( در ناودیس زغالی کرمان، 32 نمونه زغالسنگ و 4۶ نمونه شیل برداشت شد. این نمونه ها به طریقه ژئوشیمیایی مورد 
مطالعه قرار گرفت و کمیت، کیفیت و بلوغ حرارتی مواد آلی آنها تعیین شد. براساس داده های حاصل از پیرولیز راک- اوِل مشخص شد 
که محتوای کل کربن آلی )TOC( در نمونه های زغالسنگ در وضعیت عالی قرار دارد. این شرایط برای نمونه های شیل نیز کم و بیش 
مشابه است. همچنین بررسی پتانسیل زایشی )GP( نیز نشان داد که اغلب نمونه ها پتانسیل قابل قبولی برای تولید گاز و نفت دارند. 
بنابراین، کمیت مواد آلی سازند هجدک در مجموع در شرایط خوب تا عالی ارزیابی شد. با بهره گیری از اندیس هیدروژن )HI( به عنوان 
یکی از مهمترین شاخص های تعیین کننده کیفیت سنگ های منشاء مشخص شد که نمونه های زغالسنگ و شیل سازند هجدک دارای 
اندیس هیدروژن از کمتر از ۵0 تا بیش از ۶00 میلی گرم هیدروکربن بر گرم سنگ بوده و عمده نمونه ها در بازه های ۵0 تا 200 و 200 تا 
300 قرار می گیرند و بنابراین می توان کیفیت این مواد را از فاقد توان تولید هیدروکربن تا دارای توان تولید گاز و نفت در نظر گرفت. 
نوع کروژن موجود در این نمونه ها نیز در گروه های III و II-III قرار می گیرد و در نتیجه تولید گاز و نفت برای این ناحیه محتمل است. 
بالا بودن نسبت S3/S2 )3.70 تا 402.3۶( نمونه ها نیز تولید محصولات یادشده را تأیید می کند. به منظور براورد بلوغ حرارتی مواد 
آلی از دو روش Tmax و انعکاس ویترینایت استفاده شد. مقادیر Tmax اغلب نمونه های مورد بررسی نشانگر قرارگیری آن ها در ابتدا 
تا انتهای پنجره نفتی است. بالاترین مقدار Tmax مربوط به منطقه تیکدر است که این بلوغ بالا )شرایط فوق بالغ( احتمالاً به خاطر 
مجاورت با گسل کوهبنان است. اندازه گیری های قدرت انعکاس ویترینایت نیز از نشان داد که مقدار انعکاس از 0.۵ تا 2 درصد در تغییر 
بوده و میانگین آن 1.18 است و این مقدار با پنجره نفتی مطابقت دارد. در نهایت، براساس کمیت، کیفیت و بلوغ حرارتی مواد آلی در 
ناودیس زغالی کرمان می توان اظهار داشت که این ناحیه پتانسیل کافی برای تولید گاز و به مقدار کمتر نفت را دارد. بعلاوه، لایه های 

زغالی در مجموع به خاطر داشتن مقادیر بالاتر محتوای لیپتینایت )تا 22 درصد( از شرایط بهتری برخوردارند.

واژگان کلیدی: ناودیس زغالی کرمان، هجدک، پتانسیل هیدروکربن زایی، پیرولیز، کروژن
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پیش بینی غلظت بهینه سولفینول در واحد تصفیه گاز پالایشگاه خانگیران از 
طریق سیستم استنتاج تطبیقی عصبی- فازی و شبکه رگولاریزاسیون

علی•گرمرودی•اصیل•*•)گروه•مهندسی•شیمی،•دانشکده•فنی•مهندسی•و•علوم•پایه،•دانشگاه•بجنورد،•بجنورد،•ایران(••

•اکبر•شاهسوند•1•)گروه•مهندسی•شیمی،•دانشکده•فنی•مهندسی،•دانشگاه•فردوسی•مشهد،•مشهد،•ایران(••

مرتضی•اسفندیاری•)گروه•مهندسی•شیمی،•دانشکده•فنی•مهندسی•و•علوم•پایه،•دانشگاه•بجنورد،•بجنورد،•ایران(••

ـــــــــــــــــــــــ

چکیــــده

غلظت سولفید هیدروژن در گاز اسیدی ورودی به واحد بازیافت گوگرد از جمله پارامترهای مهم و تاثیرگذار می باشد که باید طراحان 
آن واحدها در هنگام تصمیم گیری برای انتخاب فرآیند یا ساختار درست جهت بدست آوردن بیشترین بازده بازیافت گوگرد در نظر 
داشته باشند. استفاده از حلال های ممانعت فضایی شده مانند آمین های نوع سوم ارتقاء یافته و همچنین ساختارهای متفاوت برای واحد 
تصفیه گاز، از جمله گزینه های مختلف برای غنی سازی گاز اسیدی )AGE( که به منظور کاهش غلظت دی اکسید کربن و هیدروکربن 
های آروماتیکی سنگین و افزایش غلظت سولفید هیدروژن در جریان خوراک ورودی به واحد بازیافت گوگرد انجام می گیرد، خواهد 
بود. در مقاله حاضر با استفاده از تلفیق نرم افزار اسپن-هایسیس و دو شبکه مجزا )به نام های شبکه رگولاریزاسیون و سیستم استنباط 
فازی- عصبی تطبیقی( نسبت به مقایسه توانایی غنی سازی گاز اسیدی حلال سولفینول-M )سولفولان+MDEA( در غلظت بهینه و 
حلال رایج MDEA، هنگامی که هر دوی آن ها به عنوان حلال واحد تصفیه گاز مورد استفاده قرار می گیرند، اقدام شده است. نتایج 
 )MDEA شامل 37% وزنی سولفولان و 4۵% وزنی( M-حاصل از شبیه سازی حاکی از آن بود که در غلظت بهینه حلال سولفینول
تمامی تولوئن و اتیل بنزن و همچنین 80% از بنزن ورودی به واحد تصفیه گاز، از خوراک ورودی به واحد بازیافت گوگرد حذف خواهند 
بالای %۵7  به  از مقدار فعلی %33/48  بازیافت گوگرد  به واحد  این، کسر مولی سولفید هیدروژن در خوراک ورودی  بر  شد. علاوه 
افزایش پیدا خواهد کرد. افزایش انتخاب پذیری حلال سولفینول-M باعث افزایش کسر مولی دی اکسید کربن در جریان گاز شیرین به 

حدود 4/۵% خواهد شد که کماکان زیر مقدار مجاز می باشد.
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بررسی اثر جایگزینی آکنه های مدرن با کارآئی بالا در فرآیند 
تصفیه گاز طبیعی

میثم•وحیدی•فردوسی•)دانشگاه•فردوسی•مشهد•-•دانشکده•مهندسی•-•گروه•مهندسی•شیمی(••

امید•صباغ•)دانشگاه•فردوسی•مشهد•-•دانشکده•مهندسی•-•گروه•مهندسی•شیمی(••

محمد•علی•فنائی•)دانشگاه•فردوسی•مشهد•-•دانشکده•مهندسی•-•گروه•مهندسی•شیمی(••

ـــــــــــــــــــــــ

چکیــــده

در این تحقیق، اثر نوع آکنه بر نرخ انتقال جرم و میزان افت فشار در برج های شیرین سازی گاز طبیعی مورد ارزیابی قرار گرفته 
است. بدین منظور از میان آکنه های مدرن، انواع Super Ring، Ralu Ring، Ralu Flow و همچنین از میان نسل دوم آکنه های 
موجود، نوع Pall Ring  انتخاب شده و اثر جایگزینی هریک از آنها درون برجهای تماس، توسط نرم افزار Aspen Hysys  بررسی شده 
است. لازم بذکر است که با توسعه یک برنامه محاسباتی در MATLAB و فراخوانی آن توسط نرم افزار مذکور، امکان پیش بینی پدیده 
طغیان فراهم شده است. به منظور اعتبار سنجی مدل های انتخابی نیز، نتایج شبیه سازی با اطلاعات استخراج شده از یک واحد واقعی 
مقایسه گردیده، با این تفاوت که اطلاعات تجربی موجود مربوط به واحدی است که از آکنه Pall Ring  )نسل دوم( در برجهای تماس 
 Ralu منجر به کاهش افت فشار و همچنین استفاده از نوع  Super Ring استفاده نموده است. نتایج نشان می دهد که استفاده از آکنه
Ring باعث افزایش نرخ انتقال جرم خواهد شد. این درحالی است که استفاده آکنه Ralu Flow ، به تنهایی می تواند هر دو هدف را 

برآورده نموده و منجر به افزایش ظرفیت شیرین سازی گاز گردد. 
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